

PL/I Programmers Guide
r6.1 SP2

Unicenter
®

 SOLVE:CPT
™

This documentation and any related computer software help programs (hereinafter referred to as the
“Documentation”) is for the end user’s informational purposes only and is subject to change or withdrawal by CA at
any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in
part, without the prior written consent of CA. This Documentation is confidential and proprietary information of CA
and protected by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of the documentation for
their own internal use, and may make one copy of the related software as reasonably required for back-up and
disaster recovery purposes, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the provisions of the license for the
product are permitted to have access to such copies.

The right to print copies of the documentation and to make a copy of the related software is limited to the period
during which the applicable license for the Product remains in full force and effect. Should the license terminate for
any reason, it shall be the user’s responsibility to certify in writing to CA that all copies and partial copies of the
Documentation have been returned to CA or destroyed.

EXCEPT AS OTHERWISE STATED IN THE APPLICABLE LICENSE AGREEMENT, TO THE EXTENT PERMITTED
BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END
USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION,
GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in the Documentation is governed by the end user’s applicable license agreement.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the
restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3),
as applicable, or their successors.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Copyright © 2006 CA. All rights reserved.

Contents iii

 Contents

Chapter 1: Unicenter SOLVE:CPT Tools
The Unicenter SOLVE:CPT Administrative Interface 1-2

Unicenter SOLVE:CPT API Services ... 1-2
The Unicenter SOLVE:CPT FTP Client Callable Service 1-2

Automated Transactions ... 1-3
Tools Customization ... 1-3

The LISTEN Tool .. 1-4
Diagnostics.. 1-5
MRO Feature .. 1-5

The RECEIVE Tool... 1-5
Customization ... 1-6
Reliability Factors .. 1-6

The SEND Tool .. 1-8
Customization ... 1-8
Reliability Factors .. 1-9

The SELECT Tool ... 1-11

Chapter 2: Unicenter SOLVE:CPT API Services
The Unicenter SOLVE:CPT Interface... 2-2

Unicenter SOLVE:CPT Task-Related User Exit Interface (TRUE) 2-3
Application Programming Concepts ... 2-3

TCP Connection Management .. 2-5
LISTEN ... 2-6
CONNECT .. 2-6

TCP Data Transfer ... 2-7
SEND... 2-8
RECEIVE.. 2-8

UDP Data Transfer and Endpoint Creation ... 2-9
SENDTO ... 2-10
RCVFROM ... 2-10

iv PL/I Programmers Guide

Connection and Endpoint Release .. 2-11
CLOSE... 2-11

Data Translation .. 2-12
TRANSLATE ... 2-12

Facility Management.. 2-13
GIVE .. 2-14
TAKE .. 2-15

Unicenter SOLVE:CPT FTP Client Service ... 2-16
Unicenter SOLVE:CPT FTP Client Service Overview 2-17

Security Program ... 2-19
Security Program ... 2-20
The Security Communications Block .. 2-21
Security Communications Block .. 2-22

Sample Unicenter SOLVE:CPT API Pseudo Code .. 2-23
Client Application Example .. 2-23
Server Application Example 1 .. 2-25
Server Application Example 2 .. 2-27
Server Application Example 3 .. 2-29
Server Application Example 4 .. 2-31

Unicenter SOLVE:CPT API Sample Programs ... 2-32
Client 1 Sample Program .. 2-35
TCP Client 2 Sample Program .. 2-36
TCP Server 1 Sample Program.. 2-36
TCP Server 2 Sample Program.. 2-37
Server 3 Sample Program .. 2-37
Server 4 Sample Program .. 2-37
Server 5 Sample Program .. 2-38
UDP Client Sample Program ... 2-38
UDP Server Sample Program... 2-38

Using CA-InterTest with Unicenter SOLVE:CPT Applications............................. 2-39
Compiling and Linking a CPT API Application .. 2-40

Chapter 3: CLOSE Service
Call Syntax.. 3-2
Recommended ACL Parameters... 3-2
Usage Examples ... 3-2

Graceful Close ... 3-3
Abortive Close... 3-4

Parameter Values Returned in the ACL .. 3-5
PL/I Structures .. 3-5

Contents v

Sample Programs .. 3-6
Completion Information.. 3-6
Return Codes.. 3-7
Usage Notes... 3-9
Complete Parameter List .. 3-10

Chapter 4: CONNECT Service
Call Syntax.. 4-2
Recommended ACM Parameters .. 4-2
Usage Example .. 4-3
Parameter Values Returned in the ACM ... 4-4
PL/I Structures .. 4-5
Sample Programs .. 4-6
Completion Information.. 4-6
Return Codes.. 4-7
Usage Notes... 4-9
Complete Parameter List .. 4-11

Chapter 5: FTP Client Service
Call Syntax.. 5-2
Recommended AFT Parameters ... 5-2
Usage Example .. 5-3

Parameter Values Returned in the AFT... 5-5
PL/I Structures .. 5-5
Sample Programs .. 5-6
Completion Information.. 5-6
Return Codes.. 5-7
Module Descriptions ... 5-9

T09TCFCM.. 5-9
T09TCFDM... 5-10
T09TCFRM ... 5-10

Usage Notes.. 5-11
Complete Parameter List .. 5-12

vi PL/I Programmers Guide

Chapter 6: GIVE Service
Call Syntax.. 6-2
Recommended AFM Parameters .. 6-2
Usage Example .. 6-2
Parameter Values Returned in the AFM.. 6-4
PL/I Structures .. 6-4
Sample Programs .. 6-5
Completion Information.. 6-5
Return Codes.. 6-6
Usage Notes... 6-7
Complete Parameter List ... 6-8

Chapter 7: LISTEN Service
Call Syntax.. 7-2
Recommended ACM Parameters .. 7-2
Usage Examples ... 7-3

Recommended Server .. 7-3
Standard Multithreaded Server.. 7-4
Multithreaded Server—Special Start Transaction Needs 7-5
Single-Threaded Server... 7-6
Sample Daughter Task Taking Ownership of a Session 7-7

Parameter Values Returned in the ACM ... 7-8
PL/I Structures .. 7-8
Sample Programs .. 7-9
Completion Information... 7-10

Completion Information When the ACMTRNID Field Is Set in the CPT-ACM........... 7-10
Completion Information When the ACMTRNID Field Is Unspecified in the CPT-ACM .. 7-11

Return Codes... 7-12
Usage Notes.. 7-14
Network Considerations... 7-16
Complete Parameter List .. 7-17
Client-Data Listener Option.. 7-23

Client-Data Option Data Structure .. 7-25
Examples... 7-25
Invoking the Listener with Translation from an PL/I CPT............................. 7-26
Example of a PL/I Program, Client-Data Listener 7-27

Contents vii

Chapter 8: RCVFROM Service
Call Syntax.. 8-3
Recommended ADT Parameters .. 8-3
Usage Example .. 8-4
Parameter Values Returned in the ADT .. 8-5
PL/I Structures .. 8-6
Sample Programs .. 8-6
Network Considerations.. 8-7
Return Codes.. 8-8
Complete Parameter List .. 8-10

Chapter 9: RECEIVE Service
Call Syntax.. 9-2
Receive Methodology Options .. 9-2

Terminology and Receive Concepts Used in the Definitions 9-2
Introduction to Receive Methodology Options .. 9-5
Non-Blocking Fixed Length RECEIVE.. 9-7
Non-Blocking Variable Length RECEIVE .. 9-10
Recommended ADT Parameters.. 9-10
Non-Blocking LL RECEIVE .. 9-13
Non-Blocking Separator Character RECEIVE .. 9-16
Blocking Fixed Length RECEIVE ... 9-20
Blocking LL RECEIVE ... 9-22
Blocking Separator Character RECEIVE ... 9-24
Non-Blocking RECEIVE ... 9-26
Blocking RECEIVE .. 9-28

Parameter Values Returned in the ADT ... 9-31
PL/I Structures ... 9-31
Sample Programs ... 9-32
Completion Information... 9-32
Return Codes... 9-33
Usage Notes.. 9-35
Complete Parameter List .. 9-37

viii PL/I Programmers Guide

Chapter 10: SEND Service
Call Syntax... 10-2
Recommended ADT Parameters ... 10-2

LL SEND... 10-3
Separator Character SEND ... 10-3

Usage Examples .. 10-4
Data SEND Example .. 10-5
LL SEND Example .. 10-6
Separator Character SEND Example .. 10-7

Parameter Values Returned in the ADT ... 10-9
PL/I Structures ... 10-9
Sample Programs ..10-10
Completion Information..10-10
Return Codes..10-12
Usage Notes...10-13
Complete Parameter List ...10-15

Chapter 11: SENDTO Service
Call Syntax... 11-3
Recommended ADT Parameters ... 11-3
Usage Example ... 11-4
Parameter Values Returned in the ADT ... 11-5
PL/I Structures ... 11-6
Sample Programs ... 11-6
Network Considerations... 11-7
Return Codes... 11-8
Complete Parameter List ...11-10

Chapter 12: TAKE Service
Call Syntax... 12-2
Recommended AFM Parameters ... 12-2
Usage Example ... 12-2
Parameter Values Returned in the AFM... 12-3
PL/I Structures ... 12-4
Sample Programs ... 12-4
Completion Information... 12-5
Return Codes... 12-5
Usage Notes.. 12-6

Contents ix

Complete Parameter List .. 12-8

Chapter 13: TRANSLATE Service
Call Syntax... 13-2
Recommended AXL Parameters.. 13-2
Usage Example ... 13-2

Inbound Translation Example .. 13-3
Outbound Translation Example .. 13-4

Custom Translation Table Usage Notes ... 13-5
Parameter Values Returned in the AXL ... 13-6
PL/I Structures ... 13-6
Sample Programs ... 13-7
Completion Information... 13-7
Return Codes... 13-8
Usage Notes.. 13-9
Complete Parameter List ...13-10

Appendix A: Return Codes
Return Codes... A-1

Diagnostic Code Field ... A-4
PL/I Structure T09KPRCS ... A-4

Appendix B: Control Block Layouts
T09KPCON: PL/I Call Constants Structure...B-1
ACL: Argument for CLose Used by the CLOSE API Service................................B-4

Offset Table ...B-4
Alphabetized Field Name Cross-Reference Table......................................B-5
Sample Structure Member T09KPACL ...B-5
CLOSE Associated Constants from Structure Sample Member T09KPCONB-6

ACM: Argument for Connection Management Used by the CONNECT and LISTEN API ServicesB-7
Offsets ..B-7
Alphabetized Field Name Cross-Reference Table......................................B-9
Sample Structure Member T09KPACM..B-10
Connect/Listen Associated Constants from Structure Sample Member T09KPCONB-11

x PL/I Programmers Guide

ADT: Argument for Data Transfer Used by RECIEVE, SEND, RECVFROM, and SENDTO Services
...B-12

Offsets ...B-12
Alphabetized Cross-Reference Table ..B-13
Sample Structure Member T09KPADT ..B-14
Data Transfer Associated Constants from Structure Sample Member T09KPCONB-15

AFM: Argument for Facility Management Used by the GIVE and TAKE ServicesB-16
Offsets ...B-16
Alphabetized Cross-Reference Table ..B-17
Sample Structure Member T09KPAFM ..B-17
GIVE/TAKE Associated Constants from Structure Sample Member T09KPCONB-18

AFT: Argument for File Transfer Used by the FTP Client Service CallB-18
Offsets ...B-18
Alphabetized Cross-Reference Table ..B-19
Sample Structure Member T09KPAFT...B-19
File Transfer Associated Constants from Structure Sample Member T09KPCONB-21

AXL: Argument for Data Translation Used by the Translate API ServiceB-22
Offsets ...B-22
Alphabetized Cross-Reference Table ..B-23
Sample Structure Member T09KPAXL ..B-24
Translate Associated Constants from Structure Sample Member T09KPCONB-25

Client Data Listener Transaction Start...B-26
Sample Structure Member T09KPCSK...B-26

Connection Time Security Program Control Block ..B-27
Offsets ...B-27
Sample Structure Member T09KPSEC ...B-28

Parameter List Passed to T09MTRAN Initiated TransactionsB-29
T09DLSTP DSECT Sample ...B-29
Field Descriptions...B-30

LCA0000 and CFG0000 Control Blocks..B-31
LCA0000 Control Block Listing ...B-31
CFG0000 Control Block Listing ...B-32

Appendix C: T09MTRAN Programming Notes
Parameter List Passed to T09MTRAN Initiated Transactions C-2

Basic Layout Usage Examples .. C-3
EZACONFG Layout Usage Example.. C-4

LCA0000 and CFG0000 Control Block Programming Notes C-5

Contents xi

Appendix D: Linking EZASOKET, EZACICSO and EZACICAL
Applications
Linking EZASOKET Applications .. D-2

Example: Linkage Editor Control Cards ... D-2
Example: Link Control Cards for IBM TCP Previously Compiled Programs............. D-3

Linking EZACICSO Applications .. D-4
Example: EZACICSO Linkage Editor Control Cards.................................. D-4

Linking EZACICAL Applications .. D-5

Index

Unicenter SOLVE:CPT Tools 1–1

Chapter

1 Unicenter SOLVE:CPT Tools

The Unicenter® TCPaccess™ Programming Toolkit for CICS, Unicenter®
SOLVE:CPT™, is a packaged set of tools to help developers of CICS programs
easily use open networking topologies to access data within a wide area network.

The following topics are discussed in this chapter and provide information about
the Unicenter SOLVE:CPT Tools:

■ Automated Transactions—Describes how to send and receive data over
TCP/IP using transient data queues

■ The LISTEN Tool—Describes the listening and data processing tasks of the
LISTEN tool

■ The RECEIVE Tool—Describes how the RECEIVE tool works, including
reliability factors

■ The SELECT Tool—Describes the SELECT tool which provides pseudo-
conversational receive functions

■ The SEND Tool—Describes the automated SEND tool and what it does.

Unicenter SOLVE:CPT is comprised of three functional groups:

■ CPT Tools

■ CPT API services

■ CPT Administrative Interface

The Unicenter SOLVE:CPT Administrative Interface

1–2 PL/I Programmers Guide

The Unicenter SOLVE:CPT Administrative Interface
The Unicenter SOLVE:CPT Administrative Interface is a set of CICS transactions
that enables you to view everything that is currently occurring within CPT. CPT
can facilitate online debugging and analysis of problems with CPT programs.
The interface can be used to see current activity, including logging this
information statistically for future capacity planning. CPT itself and CPT tools
can be dynamically changed and added through these panels. Tracing can be
turned on/off; changed; and viewed online to CICS using the administrative
interface. Full documentation of the CPT interface is contained in the
Administrator Guide.

Unicenter SOLVE:CPT API Services

The Unicenter SOLVE:CPT callable API services provide for full duplex (bi-
directional) data transfer across a TCP/IP or OSI networks. This set of services
implements Berkeley System Development (BSD) compatible sockets. The
Unicenter SOLVE:CPT API callable services are a higher-level (smaller) set of
verbs enabling TCP and OSI connection functionality. The API provides a higher
degree of flexibility when writing an application than using Unicenter
SOLVE:CPT tools. The Unicenter SOLVE:CPT API provides full socket
capabilities with an easy interface while enabling the same volume and
performance abilities normally obtained using the base stack assembler API. You
will find introductory documentation to Unicenter SOLVE:CPT API Services in
the chapter “Unicenter SOLVE:CPT API Services.”

The Unicenter SOLVE:CPT FTP Client Callable Service

The Unicenter SOLVE:CPT FTP client callable service provides the ability to send
or receive a file to CICS. The FTP service allows a subset of data to be easily read
or written to either CICS transient data queue or CICS temporary storage. FTP
provides a quick communication between two remote hosts easily accessible to
CICS. This is fully compatible with all standard FTP client commands. This
service is documented with the Unicenter SOLVE:CPT API services in the
chapter “Unicenter SOLVE:CPT API Services.”

Automated Transactions

Unicenter SOLVE:CPT Tools 1–3

Automated Transactions
The automated tools in the Unicenter SOLVE:CPT are pre-written CICS code that
CICS programmers can use to send and receive data over TCP/IP using transient
data queues.

This feature provides immediate network capabilities with very little
development effort. Application programs simply read and write to transient
data queues.

Unicenter SOLVE:CPT automated transactions provide a variety of processing
options including translation, file or record processing, dynamic queue name
resolution, dynamic host and port resolution, buffering requirements, and
statistics. These automated transactions can be used in combination with user-
written applications or can be used as development tools.

These tools include:

■ LISTEN

■ RECEIVE

■ SEND

The data flow of the automated data transfer transactions is simplex, or in a
single direction. This means that the automated data transfer transactions only
receive or send data. However, the automated transactions can be used in
combination to achieve full-duplex data transfer, or conversational mode, to
achieve a wide range of application uses.

Tools Customization

 Unicenter SOLVE:CPT configuration definition statements customize the tools.
There is a specific macro instruction in the CPT configuration for each tool. The
configuration macro instructions specify options that control tool transaction
processing.

The tools are controlled by CICS table entries and CPT configuration macro
statements, which are described in the Administrator Guide.

The LISTEN Tool

1–4 PL/I Programmers Guide

The LISTEN Tool
The LISTEN tool is selected by defining the T09MLSTN macro statement. This
configuration macro statement defines an automated listening transaction. The
T09MLSTN macro statement contains operands that define well-known port,
buffering requirements, statistics, and tracing.

Each TCP server port can be defined, along with its associated data processing
transaction ID. The transaction ID can be the RECEIVE tool or a user-written
program.

A LISTEN tool can also be defined to let the client determine the transaction ID
to start or the transient data queue to write client specified data into.

The LISTEN tool is initiated during CPT startup processing and is defined by an
entry in the Unicenter SOLVE:CPT configuration file.

The automated LISTEN tool requires a transaction ID in order for the T09TLSTN
program to be specified in the T09MCICS macro instruction. The default listener
transaction ID is IPTL. The T09TSTRT program initiates the automated LISTEN
tool during CPT initialization. A CICS START command is issued for each
T09MLSTN macro instruction configured.

The automated LISTEN transaction provides a mechanism to handle connection
establishment and data processing application initialization. The data processing
application can be either the Unicenter CPT automated RECEIVE tool or a user-
written routine, providing quick development of server applications.

 CLIENT SERVER

(to well-known port) (to predefined trans ID)

Connect LISTEN tool

User’s TRANS ID

TCP/IP

Note: The LISTEN tool is documented in the Administrator Guide.

The RECEIVE Tool

Unicenter SOLVE:CPT Tools 1–5

Diagnostics

In order to assist in application development, maintenance, support, and
performance tuning, a number of diagnostic tools are provided with LISTEN.
When options in the T09MLSTN macro are defined, tracing and statistics can be
enabled. Traces are provided for internal flow of control, Unicenter SOLVE:CPT
API request arguments, and network data; statistics report the activity on
established connections.

MRO Feature

With the MRO feature, the LISTEN tool can be externalized from CICS in order
to load balance across several CICS regions, thereby providing CICS storage
constraint relief plus all the other benefits provided with running MRO
transactions. However, once an endpoint is established in one CICS, it cannot be
passed to another CICS.

The RECEIVE Tool
The RECEIVE tool consists of:

■ An automated LISTEN transaction

■ An automated RECEIVE transaction

■ A user-written application

The automated LISTEN transaction can spawn an automated RECEIVE
transaction after a client connection is established.

The automated RECEIVE transaction:

 ■ Reads data from the network

■ Processes the data

■ Writes records to a defined transient data queue

The user-written application is triggered when data is written to the transient
data queue according to limits set in the CICS Automatic Transaction
Initialization (ATI) facility. These limits are defined in the Destination Control
Table (DCT) for the queue.

A single LISTEN transaction can spawn multiple, simultaneous RECEIVE data
transactions, thereby servicing multiple clients simultaneously. Hence, the
automated RECEIVE tool is a multithreaded server application.

The RECEIVE Tool

1–6 PL/I Programmers Guide

CICS provides initialization of the user application when data is written to the
transient data queue. A user application simply reads records from the transient
data queue. This provides a transparent network interface for CICS application
developers to receive client application information.

Customization

Customization of the automated RECEIVE tool consists of both CICS resource
definitions and Unicenter SOLVE:CPT configuration statements. CICS resource
definitions are required for the Processing Program Table (PPT), Program
Control Table (PCT), and Destination Control Table (DCT). Unicenter
SOLVE:CPT macro definition statements are required for the automated LISTEN
(T09MLSTN) and RECEIVE (T09MRECV) transactions.

The T09MLSTN macro instructions can specify server information, an automated
RECEIVE transaction ID, and a reference to the T09MRECV configuration entry.
The default automated RECEIVE transaction ID is IPTR. The T09MRECV macro
contains operands specific to the data processing options. The data processing
options specify translations, record or file control, transient data queues,
statistics, and tracing. The transient data queue name can be identified directly,
or dynamically resolved from the first four bytes received from the connection.

Note: The RECEIVE tool is documented in the Administrator Guide.

Reliability Factors

The RECEIVE tool provides a mechanism to handle data processing over the
open network interface. Stream data received is collected into logical records and
written to a transient data queue that can trigger a user-written application.
The idiosyncrasies associated with open network data processing are performed
by the automated transaction. Additionally, the transient data queue
SYNCPOINT and ROLLBACK features are used by the automated RECEIVE
transaction to provide reliable data transfer support at the application layer.

The RECEIVE tool is configured with options that control when and how data is
written to a transient data queue. These options describe parsing requirements:

■ FILE specifies that data is received as a stream and is written to the transient
data queue as a single record without parsing

■ ALL, LL (Logical Length), and SEP (Separator Errors) specify parsing, and
one or more records can be written to the transient data queue

The RECEIVE tool does not explicitly issue SYNCPOINT commands, but rather a
SYNCPOINT command is issued by CICS during task termination. However, the
CICS ROLLBACK facility is used within the RECEIVE tool when an error in
processing is detected.

The RECEIVE Tool

Unicenter SOLVE:CPT Tools 1–7

These general categories classify errors:

■ Transport provider errors

■ Data processing errors

■ Transport Provider Errors

Transport provider errors are determined by a non-zero return code received
from a Unicenter SOLVE:CPT API service request. Typical transport provider
errors are disconnect indications from a remote host and transport provider
termination. Transport provider errors are recorded in the Unicenter SOLVE:CPT
error log and are referred to as the diagnostic code. Transport provider errors
cause an abortive termination of the connection and cause a CICS SYNCPOINT
ROLLBACK command to be issued. The only valid return code that is not
considered an error is a release indication, which is interpreted as an end-of-file
notification.

Data Processing Errors

A data processing error is determined by a logic error. Typical logic errors are:

■ Transient data buffer overflow

■ Translation, logical length (LL)

■ Separator (SEP) errors

Data processing errors are recorded in the Unicenter SOLVE:CPT error log. Data
processing errors cause an abortive termination of the connection and cause a
CICS SYNCPOINT ROLLBACK command to be issued.

Diagnostics

A number of diagnostic tools are provided with RECEIVE to assist in application
development, maintenance, support, and performance tuning. When options in
the T09MRECV macro are defined, tracing and statistics can be enabled. Traces
are provided for internal flow of control, Unicenter SOLVE:CPT API request
arguments, and network data; statistics report bytes processed, log maximum
values, and requests from Unicenter SOLVE:CPT API services.

The SEND Tool

1–8 PL/I Programmers Guide

The SEND Tool
The SEND tool consists of two programs:

■ The automated SEND transaction triggered by the CICS ATI facility.

■ A user-written application responsible for placing data into a transient data
queue. When data is written to a transient data queue, limits are defined in
the DCT for the queue.

The SEND tool is responsible for establishing a connection and processing data.
There is no restriction on the number of simultaneously executing client
transactions, although you can have only one T09MSEND macro defined for a
specific transient data queue, port, and ipname.

A user application is required to write data or records to the transient data
queue. The initialization of the automated SEND transaction and the transfer of
data is handled transparently. This provides a transparent network interface for
CICS application developers to send information to server applications.

Optionally, you can initiate the SEND tool through its transaction ID.
The command syntax contains the transaction ID and a transient data queue
name. The SEND tool then process the transient data queue as if initiated by the
ATI facility. This provides a restart mechanism for client applications.

Customization

Customization of the automated SEND tool consists of CICS resource definitions
and a Unicenter SOLVE:CPT configuration statement. CICS resource definitions
are required for the user-written application Processing Program Table (PPT)
and the Destination Control Table (DCT). The DCT entry for the transient data
queue should specify the T09TSEND transaction ID. The default transaction ID
for the T09TSEND program is IPTS. A Unicenter SOLVE:CPT macro definition
statement for the automated SEND (T09MSEND) transaction is required.

T09MSEND contains operands specific to the API transport provider and data
processing options. These specify fixed or dynamic host name and port
resolution, buffering requirements, statistics, and tracing. The data processing
options specify translation, record or file control, transient data queue name,
statistics, and tracing. The configuration options allow a user to select a fixed
server address, or dynamically resolve the server address from the first transient
data queue record. T09MSEND contains only one transient data queue name,
port, and ipname. As such, multiple T09MSEND macros must be defined in
order to address different queues, ports, or ipnames.

Note: The SEND tool is documented in the Administrator Guide.

The SEND Tool

Unicenter SOLVE:CPT Tools 1–9

Reliability Factors

The SEND tool provides a mechanism to handle data processing over the open
network interface. Data is read from a transient data queue and sent over the
connection to a server. The idiosyncrasies associated with open network data
processing is handled by the automated SEND transaction. Additionally, the
automated SEND transaction uses CICS’ transient data queue SYNCPOINT and
ROLLBACK features to provide reliable transfer support.

Unicenter SOLVE:CPT automated SEND transactions are configured with
options that control how data is sent to the transport provider. These options
describe control information required in the data transmission:

■ FILE specifies that a connection is established and released for every record
read from the transient data queue.

■ ALL, LL, and SEP options specify that multiple records can be read from the
transient data queue and sent over the connection. The LL and SEP options
require control information to be incorporated into the output data.

The SEND tool explicitly issues SYNCPOINT commands after a connection is
successfully established and released during FILE option processing. The
SYNCPOINT command is not issued while processing ALL, LL, or SEP options,
but rather a SYNCPOINT command is issued by CICS during task termination.
However, the SEND tool uses the CICS ROLLBACK facility when an error
during processing is detected.

These general categories classify errors:

■ Transport provider errors

■ Data processing errors

■ Transport Provider Error

A transport provider error is determined by a non-zero return code received
from a Unicenter SOLVE:CPT API service request. Typical transport provider
errors are disconnect indications from the remote host and transport provider
termination. Transport provider errors are recorded in the Unicenter SOLVE:CPT
error log and are referred to as the diagnostic code. Transport provider errors
cause an abortive termination of the connection and a CICS SYNCPOINT
ROLLBACK command to be issued. The only valid return code not considered
an error is a release indication, which is interpreted as an end-of-file notification.

The SEND Tool

1–10 PL/I Programmers Guide

Data Processing Error

A data processing error is determined by a logic error. Typical logic errors are
transient data buffer overflow, translation, logical length (LL) and separator
(SEP) errors. Data processing errors are recorded in the Unicenter SOLVE:CPT
error log. Data processing errors cause an abortive termination of the connection
and a CICS SYNCPOINT ROLLBACK command is issued.

Diagnostics

In order to assist in application development, maintenance, support, and
performance tuning, a number of diagnostic tools are provided with SEND.
When options in the T09MSEND macro are defined, tracing and statistics can be
enabled. Traces are provided for internal flow of control, Unicenter SOLVE:CPT
API request arguments, and network data; statistics report bytes processed, log
maximum values, and requests from Unicenter SOLVE:CPTAPI services.

See the Administrator Guide for information on setting up your network
information and enabling these automated tools.

The SELECT Tool

Unicenter SOLVE:CPT Tools 1–11

The SELECT Tool
The SELECT tool consists of two programs:

■ The automated SELECT transaction

■ A user-written application using the RECEIVE API with the ADTNWAIT
option and the GIVE API with the AFMOPSEL option

 The SELECT tool enables the user-written application to be pseudo-
conversational. Once the RECEIVE and GIVE calls are performed, the user-
written application can perform an EXEC CICS RETURN. Once the data is
received, the SELECT tool restarts the transaction to process the data.

In order for the RECEIVE transaction to take advantage of the SELECT tool, it
must be coded in a particular way. See the sample program T09PASV5 in
T09SAMP for an example of these steps:

1. The ADTNWAIT option flag is specified for ADTOPCD2 in the ADT for
RECEIVE. This option tells the RECEIVE service to not issue a wait in the
service but instead return to the caller with a CEPWBLCK return code.

2. If the CEPWBLCK return code is returned from RECEIVE, the transaction
then calls the GIVE service using the flag AFMOPSEL in the AFMOPDC1
options field. This tells the GIVE service to have the SELECT tool transaction
perform the wait.

Note: If the GIVE service returns CEPESLCT, then the SELECT tool
transaction is not running.

Once the GIVE service completes successfully, the transaction should return
to CICS. In addition, the AFM argument can have the next transaction ID
placed in AFMNTRAN. This is the transaction that is executed by the
SELECT tool once the RECEIVE is complete. It defaults to the current
transaction.

3. When the wait finishes for the RECEIVE, the SELECT tool transaction starts
the specified transaction. The transaction needs to RETRIEVE the token from
the CICS commarea. The length will only be four bytes and is the Unicenter
SOLVE:CPT token. Since a receive transaction may also be started by a
listener, the program can use the returned length from the RETRIEVE to
determine if only the token was passed or an ACM.

4. The newly started transaction now needs to issue the RECEIVE call again.
All parameters to the RECEIVE, except for ADTBUFFA, must be the same as
when the RECEIVE was issued in Step 1. Various error codes are returned if
not or unpredictable results may occur. This RECEIVE may complete with
any return code including the CPTWBLCK. If the CPTWBLCK occurs, it
returns to Step 2. Otherwise, process the RECEIVE completion.

Note: The SELECT tool is documented in the Administrator Guide.

Unicenter SOLVE:CPT API Services 2–1

Chapter

2 Unicenter SOLVE:CPT API Services

This chapter provides information about the Unicenter SOLVE:CPT Application
Program Interface (API) services.

It discusses the following topics:

■ TCP Connection Management—Describes how to use the LISTEN and
CONNECT services to provide connection management

■ TCP Data Transfer—Describes how to use the SEND and RECEIVE services
to provide stream-oriented data transfer

■ UDP Data Transfer and Endpoint Creation—Describes how to use the
SENDTO and RCVFROM services to establish UDP endpoints and provide
datagram transmission capabilities

■ Connection and Endpoint Release—Describes how to use the CLOSE service
to release a TCP connection, close a UDP endpoint, or optionally shutdown
communications to or from a TCP endpoint

■ Data Translation—Describes how to use the TRANSLATE service to provide
single-byte character set translation

■ Facility Management—Describes how to use the GIVE and TAKE services to
provide facility management

■ Unicenter SOLVE:CPT FTP Client Service—Describes how to transfer files
from CICS to remote systems using the Internet standard File Transfer
Protocol (FTP)

■ Security Program—Describes how to invoke and use the optional security
program feature provided with the LISTEN service

■ Sample Unicenter SOLVE:CPT API Pseudo Code—Provides sample pseudo
codes for client and server applications

■ Unicenter SOLVE:CPT API Sample Programs—Provides a table listing each
sample program and its corresponding language, and sample client and
server programs that are in the T09SAMP data set

■ Using CA-InterTest with Unicenter SOLVE:CPT Applications—Provides a
sample JCL to help you reassemble the CA-InterTest® module to exclude
calls to the Unicenter SOLVE:CPT stubs

The Unicenter SOLVE:CPT Interface

2–2 PL/I Programmers Guide

■ Compiling and Linking a CPT API Application—Provides a sample JCL to
help you compile and link Unicenter SOLVE:CPT API Sample Programs

The Unicenter SOLVE:CPT Interface
The intent of Unicenter SOLVE:CPT is to provide the highest level of interface
available to the application program without degrading functionality. You can
mix and match between using the Tools, FTP client, or API services within CPT.
In other words, use the easiest Unicenter SOLVE:CPT service that meets your
minimal requirements. A good example of this is using the Unicenter
SOLVE:CPT Listen Tool to initiate your application transaction, which then uses
Unicenter SOLVE:CPT API services for two way data transfer. In this example,
you remove the most complicated code (listen logic) from your program while
still maintaining full socket bi-directional capabilities that are desired for a robust
TCP/IP program.

A standard set of Berkeley Systems Development™ (BSD) sockets verbs is
usually 26 or more verbs. Unicenter SOLVE:CPT reduces this number to eight for
your convenience. To allow all the same functionality of BSD sockets with just
eight calls to Unicenter SOLVE:CPT requires the passing of a control block that
contains the same information as the 26+ BSD verbs. Since most of the fields
within these control blocks default quite well, you need only update those
parameter settings that affect the way your particular application needs to
function.

Implementation of the Unicenter SOLVE:CPT API services is controlled through
various subroutine calls. There are internal subroutine calls used to support the
Unicenter SOLVE:CPT environment and external subroutine calls used by
applications for service requests.

■ The internal calls manage resources associated with connections and the
Task-Related User Exit (TRUE) interface

■ The external calls generate service requests related to specific application
tasks

The Unicenter SOLVE:CPT environment management programs are responsible
for initialization, logging, and termination of the TRUE interface. The application
management programs are responsible for functions directly associated with
user-written applications. The application management routines are primarily
concerned with the recovery and cleanup of CICS, and non-CICS resources
associated with user-written applications during task termination.

There are some pseudo code samples that show the use of the Unicenter
SOLVE:CPT API services at the end of this chapter.

The Unicenter SOLVE:CPT Interface

Unicenter SOLVE:CPT API Services 2–3

Unicenter SOLVE:CPT Task-Related User Exit Interface (TRUE)

Unicenter SOLVE:CPT uses the CICS general-use programming interface facility
called task-related user exit (TRUE). The TRUE interface allows applications
access to an external, or non-CICS, resource. The external CICS resource used by
Unicenter SOLVE:CPT is a communication subsystem based on open network
protocols. The communication subsystem is an API to a transport provider.

Application Programming Concepts

The Unicenter SOLVE:CPT API facility supports communication with open
network protocols using a client/server model. The Unicenter SOLVE:CPT API
services are designed to communicate with the transport layer of the
Transmission Control Protocol/Internet Protocol (TCP/IP).

A server application passively listens, or waits, for a connection request. Once a
connection indication from a client application is received and established, data
transfer can begin. The server specifies a transport provider address or port
where it listens for connection requests. This port is called a well-known port.

The client application:

■ Actively connects to a server application

■ Contacts a well-known port for a server

■ Determines the server’s host and port where it initiates the connection

If the server is not listening, the connection request fails. Once a connection is
established, data transfer begins.

Both a client and server application can transfer data simultaneously over a full
duplex connection. Any dependence on data flow control is application specific.

The following sections describe a very high level, condensed version of pseudo
code for writing a typical client and a typical server application using Unicenter
SOLVE:CPT API services. Following these sections is a more detailed
introduction to each Unicenter SOLVE:CPT API service call. At the end of the
chapter are very detailed pseudo code examples for various client and server
sample applications.

The Unicenter SOLVE:CPT Interface

2–4 PL/I Programmers Guide

Client Condensed Pseudo Code
...

existing legacy application code to assemble data to be sent
...
initialize CPT API control blocks
call CONNECT CPT API service
call SEND CPT API service
call RECEIVE CPT API service(for acknowledgement record)
call CLOSE CPT API service
CICS RETURN

Server Condensed PseudoCode
Listen:

 initialize CPT API control blocks
 call LISTEN CPT API service
 (or recommended use the CPT LISTEN Tool)
 call GIVE CPT API service
 CICS EXEC START(mytran)
 Goto Listen:

mytran:
 initialize CPT API control blocks
 call TAKE CPT API service
 call RECEIVE CPT API service
 ...
 existing legacy application code to process the requested service
 ...
 call SEND CPT API service
 to send result of service requester
 call CLOSE CPT API service
 CICS RETURN

Note: Multiple mytran transactions will be spawned depending on number of
active connections

TCP Connection Management

Unicenter SOLVE:CPT API Services 2–5

TCP Connection Management
TCP connection management is accomplished using the LISTEN and CONNECT
services. These services are responsible for the creation of resources and for the
establishment of connections. A connection is represented by a token.

The token is returned to the application in the Argument for Connection
Management (ACM) and is used for all subsequent Unicenter SOLVE:CPT
service requests related to that connection. Multiple connections or tokens can be
gotten by an application. However, the mechanism used to manage the
connections is controlled by the application.

TCP connection management services associate ownership of a newly
established connection to the calling task. This gives the TRUE management
routines the ability to release resources during normal or abnormal task
termination.

Ownership of resources can be controlled:

■ Automatically by internal Unicenter SOLVE:CPT routines

■ Explicitly by an application through facility management services

TCP connection management services set the operating environment for the
connection. Optional arguments specify transport provider buffering, Unicenter
SOLVE:CPT internal tracing, connection statistics, and subtask initialization.
Such information can only be specified by connection management services and
cannot be modified after a connection is established.

Information related to the newly established connection is returned within the
ACM. This information contains IP host names, IP addresses, transport provider
addresses, and more. The information can be used by the application or ignored.

Both the LISTEN and CONNECT services, when used with IBM TCP/IP, have
non-blocking open options (set through the ACM) that allow control to be
returned immediately to the application program. The SELECT service
subsequently can be called to determine if the request was satisfied. This allows
for server or client application designs that handle more than one port per CICS
transaction.

TCP Connection Management

2–6 PL/I Programmers Guide

LISTEN

This service is used by a user-written application to passively listen for
connection requests. This ability provides the application with server support.
The LISTEN service requires an ACM to be initialized by the user application
and a call to the LISTEN service routine.

Successful completion of the LISTEN service returns a token that represents the
established connection with a client. This token is used for all data transfer,
data processing, and connection termination service requests.

Two variations of the LISTEN service allow a data processing transaction to be
initiated internally. The data processing transaction can be predetermined by
specifying the trans ID in the connection management argument or dynamically
by the connecting client. You select this option by initializing a field within the
connection management argument. Completion of the LISTEN service is
generally indicated by an error at Unicenter SOLVE:CPT or transport provider
termination.

Note: There is a LISTEN tool available that can be used instead of coding a
program to use the LISTEN service. See The LISTEN Tool topic in the chapter
“Unicenter SOLVE:CPT Tools.”

CONNECT

This service is used by a user-written application to actively establish a
connection with a server, thus providing it with client support. The CONNECT
service requires that an ACM be initialized by the user application and requires a
call to be made to the CONNECT service routine.

Successful completion of the CONNECT service returns a token representing the
established connection with a server. This token is used for all subsequent data
transfer, data processing, and connection termination service requests.

TCP Data Transfer

Unicenter SOLVE:CPT API Services 2–7

TCP Data Transfer
TCP data transfer is accomplished using the SEND and RECEIVE services.
These services are responsible for reliable transmission of data to and from the
transport provider’s API. Data Transfer services require an established
connection and a user application buffer.

The transport provider is not responsible for record or file boundaries. It cannot
be assumed that data transmitted will be received with the same logical
boundaries with which it was sent. Record and file boundaries are transparent to
the transport provider. Thus, applications should be designed with some
mechanism to distinguish logical record or file boundaries.

File boundaries may be the easiest to distinguish. It is possible that a connection
release could indicate the designated end of file, that the sender has completed
transmitting all data, and is closing its half of the full duplex connection.
The receiver can transmit data or simply close the connection.

If record orientated data is to be transmitted, then some predetermined
mechanism used by both the client and server applications should be designed.
Mechanisms such as separator characters, fixed length records, or record header
information can be used to delimit records. The Unicenter SOLVE:CPT tools also
use these mechanisms.

The TCP data transfer services have several options that make programming for
stream-oriented data easier:

■ There are two variations of a timed RECEIVE call that specify the amount of
data to receive before returning to the caller

■ There is an option to send or receive data in logical records where the length
of the record is stored in the first two bytes of the record

■ There is also an option to send or receive data in logical records where the
records are separated by a predefined character sequence

Both the SEND and RECEIVE (IBM TCP/IP) services have non-blocking options
that are set through the argument for data transfer (ADT) that allow control to be
returned immediately to the application program. The SELECT service
subsequently can be called to determine if the request was satisfied. This allows
for server or client application designs that handle more than one port per CICS
transaction.

TCP Data Transfer

2–8 PL/I Programmers Guide

SEND

This service is used by a user-written application to send or output data over the
connection. The SEND service requires that an ADT be initialized by the
application and requires that a call be issued to the SEND service. The data
transfer argument contains a token, data buffer address, and data buffer length.

On completion, a return code field in the ADT indicates success or failure of
request.

RECEIVE

This service is used by a user-written application to receive or input data from
the connection. The RECEIVE service requires that an ADT be initialized by the
application and requires a call to be issued to the RECEIVE service. The data
transfer argument contains a token, data buffer address and data buffer length.

On completion, a return code field in the ADT indicates success or failure of the
request. The data transfer length field must be retrieved to determine the amount
of data received.

UDP Data Transfer and Endpoint Creation

Unicenter SOLVE:CPT API Services 2–9

UDP Data Transfer and Endpoint Creation
Data transfer for UDP is accomplished using the SENDTO and RCVFROM
services. These services also create an endpoint if the caller does not pass an
existing endpoint in the argument for data transfer. UDP endpoints are
represented by a token.

UDP does not provide the reliable data transmission capabilities that TCP does.
UDP works as well as the underlying IP internet and hardware network.
Applications developed for local area networks are probably quite reliable while
the same applications ported to a wide area internet might not be. UDP
applications generally should be developed with logic to account for datagrams
that are lost or out of sequence.

Because reliability is not built into connectionless data transmission, there is no
corresponding overhead for the transport provider. This makes UDP data
transmission faster than TCP data transmission. Since there is no notion of a
connection between two UDP endpoints, whenever data is sent or received it is
transmitted all at once. Applications do not have to be designed to extract logical
records from variable length streams of data.

Both the SENDTO and RCVFROM (IBM TCP/IP) services have non-blocking
options set through the ADT that allow control to be returned immediately to the
application program. The SELECT service subsequently can be called to
determine if the request was satisfied. This allows for server or client application
designs that handle more than one port per CICS transaction.

UDP Data Transfer and Endpoint Creation

2–10 PL/I Programmers Guide

SENDTO

This service is used by a user-written application to send a datagram to a remote
UDP endpoint. The SENDTO service requires that an ADT be initialized by the
application. It must include a buffer address, buffer length, and remote endpoint
address identification. If an existing token is not passed, new token, send, and
receive buffer queues are created. The size and number of Unicenter SOLVE:CPT
SENDTO and RCVFROM buffers for the endpoint can be set in the ADT along
with optional trace and statistics flags.

RCVFROM

This service is used by a user-written application to receive datagrams from
remote UDP endpoints. The RCVFROM service requires that an ADT be
initialized by the application. It must include a buffer address and buffer length.
If an existing token is not passed, new token, send, and receive buffer queues are
created. When a new token is to be created, the local well-known UDP port must
also be passed in the ADT. The size and number of Unicenter SOLVE:CPT SEND
and RECEIVE buffers for the endpoint can be set in the ADT along with optional
trace and statistics flags.

Connection and Endpoint Release

Unicenter SOLVE:CPT API Services 2–11

Connection and Endpoint Release
Connection and endpoint release is accomplished using the CLOSE service.
This service is responsible for the release of the connection and all internal
Unicenter SOLVE:CPT associated resources. Connection Release requires that
either a listen or data transfer connection be established.

A connection or endpoint release is scheduled explicitly by issuing the CLOSE
service request, or implicitly by the TRUE management routines during task
termination. If an explicit CLOSE service is issued and no connections or
endpoints are owned by the task, the implicit close scheduled by the TRUE
management routines is not issued.

TRUE management routines are responsible for managing connections and
associated resources. The releasing of resources is one facility provided by the
task-related user task management routines and is controlled by an ownership
mechanism. During task termination, the TRUE management routines
automatically (implicitly) schedule a connection or endpoint release (CLOSE)
request for owned resources. CLOSE, issued by the TRUE management routines
for active connections, is abortive.

You can use the facility management services to manipulate connections,
endpoints, and associated resources owned by a task to avoiding implicit
termination.

CLOSE

A user-written application uses the CLOSE service to release the connection or
endpoint. The CLOSE service requires that an ACL be initialized by the
application and requires a call to be issued to the CLOSE service. The ACL
contains a token and termination options. The termination options include
orderly (graceful) and abortive connection release.

The notion of an orderly close in BSD sockets is simply to wait a specified
amount of time, so that the other end of the connection can finish receiving data
before closing down the connection. This wait or linger time can be specified
globally through the configuration macro, T09MCICS, or in the ACL when
calling the CLOSE service.

On completion, a return code field in the ACL indicates success or failure of the
request. When a connection or endpoint is successfully released, the token is no
longer valid.

Data Translation

2–12 PL/I Programmers Guide

Optionally, you can use the CLOSE service to implement the BSD Shutdown
socket function. This set of options is included in the CLOSE service to
accommodate existing applications that depend on this TCP half close
mechanism as an application level protocol indicating the closing of a TCP
connection.

The available options are:

ACLSHUT0—Disallow RECVS on for this token

ACLSHUT1—Disallow SENDS on for this token

ACLSHUT2—Disable SENDS and RECVS for this token

Calling the CLOSE service with a shutdown option does not close the endpoint
or release any associated Unicenter SOLVE:CPT resources.

Data Translation
The TRANSLATE service provides support for single-byte character set
translation. This implies that any character set of 256 (or less) data
representations is supported. Translation service requires an established
connection and a user application buffer.

Applications with special translation requirements are able to select an alternate
translation table. Alternate translation tables must be customized to the
Unicenter SOLVE:CPT system by applying an SMP/E USERMOD. See the
Administrator Guide for a detailed description of translation table customization.

TRANSLATE

The TRANSLATE service uses a user-written application to translate EBCDIC
and ASCII data within a user buffer. The TRANSLATE service requires an
Argument for Translation (AXL) to be initialized by the application and requires
a call to be issued to the TRANSLATE service. The AXL contains a token, data
buffer address and length, and translation options. Translation options indicate
EBCDIC to ASCII or ASCII to EBCDIC translation. Optionally, a user application
can override the site default translation table.

On completion, a return code field in the AXL indicates success or failure of the
request.

Facility Management

Unicenter SOLVE:CPT API Services 2–13

Facility Management
The GIVE and TAKE services provide facility management. These optional
services provide enhanced connection management support for multitasked
applications. Facility management services require an established connection. A
Unicenter SOLVE:CPT connection that is used by several CICS tasks can define a
multitask application. For example, the LISTEN and RECEIVE tools used in
conjunction create a multitask application.

A multithreaded server application is an example of a multitasked application
where the Unicenter SOLVE:CPT connection is established by a listening task
and then a data processing transaction is initiated to handle data transfer. Any
application that is designed to have multiple tasks processed by a single
Unicenter SOLVE:CPT connection can benefit from facility management services.

Note: A client or single-threaded server application that establishes a connection,
transfers data, and releases the connection all within the same task, does not
need to use the facility management services.

 Unicenter SOLVE:CPT connection management services (LISTEN and
CONNECT) create connections. By default, the task that issues a connection
management service gets ownership of the connection and its associated
resources. Unicenter SOLVE:CPT TRUE management routines are responsible
for managing connections and their associated resources. Releasing resources is
one facility provided by the TRUE management routines and is controlled by an
ownership mechanism. During task termination, the TRUE management routines
automatically (implicitly) schedule a connection release (CLOSE) request for
owned resources.

The release of a connection and its associated resources is performed through the
explicit connection release request, or the implicit task termination release
facility. The GIVE and TAKE services affect the implicit task termination release
facility by disabling (GIVE) and enabling (TAKE) ownership of a connection.

There is no restriction on the number of times a multitasked application can issue
a GIVE or TAKE facility management service. The mechanism used to pass
information related to a Unicenter SOLVE:CPT connection between tasks is
application-dependent.

The IBM IUCV Socket (IBM TCP/IP) interface requires that only one socket
function per IUCV path be executed at a time. This adds the requirement of the
GIVE and TAKE services to not only manipulate the associations of tokens with
CICS transactions, but also with IUCV paths.

Facility Management

2–14 PL/I Programmers Guide

The default action for a GIVE service call is to disassociate the token from the
caller's CICS task and IUCV path. The default action for the TAKE service is to
associate the token with the caller’s CICS task and IUCV path. When an
application calls the GIVE service with the default action implied, the application
subsequently must call the SELECT service to wait for another CICS transaction
to successfully TAKE the token that was just given (see the SELECT service).

Note: Applications that want to maintain a TCP connection for a long period,
but do not want to use up CICS resources by having the transaction running the
entire time, should use the dequeue/enqueue options of the GIVE and TAKE
services. These options only disassociate and associate the token from and to a
CICS transaction, while maintaining the same IUCV path.

Some applications may benefit by use of the SELECT tool. See the SELECT Tool
topic in the chapter “Unicenter SOLVE:CPT Tools” for details.

GIVE

A user-written application uses the GIVE service to disable ownership of internal
Unicenter SOLVE:CPT resources associated with a connection. This facility
prohibits Unicenter SOLVE:CPT task-related user task management routines
from releasing a connection and associated resources during task termination.
The GIVE service requires an Argument for Facility Management (AFM) to be
initialized by the application and requires a call to be issued to the GIVE service.
The version number and token are the only arguments required.

The GIVE service provides a mechanism to disable the TRUE task termination
routine from releasing the connection and associated resources, thereby allowing
a connection and its associated resources to remain available after task
termination. This facility enhances multitasked application design.

Connections, and their associated resources, that have been given must be taken
by other tasks or explicitly released. Otherwise, the connections and resources
persist indefinitely. Resources that are not taken can lead to hung connections,
storage shortages within the CICS region or the transport provider, or
unpredictable results.

A connection can be closed by the CLOSE service after it has been given. The
GIVE service only affects implicit release management services provided by the
Unicenter SOLVE:CPT task-related user task management routines. In addition,
a connection that can be taken is not required to be given. There is no restriction
that a connection and its associated resources must be given before they can be
taken.

On completion, a return code field in the AFM indicates success or failure of the
request.

Facility Management

Unicenter SOLVE:CPT API Services 2–15

TAKE

A user-written application uses the TAKE service to get ownership of internal
Unicenter SOLVE:CPT resources associated with a connection. This facility
enables Unicenter SOLVE:CPT TRUE management routines to release a
connection and its associated resources during task termination. The TAKE
service requires that an AFM be initialized by the application and requires that a
call be issued to the TAKE service. The version number and token are the only
arguments required.

A connection that will be taken is not required to be given. There is no restriction
that a connection and its associated resources is given before it can be taken. This
provides a mechanism for ensuring proper connection and resource termination,
while still allowing a connection to be used by several tasks.

The TAKE service is implemented implicitly within the SEND, RECEIVE, and
TRANSLATE services. This implies that the connection is automatically
associated with the last task that issued a SEND, RECEIVE, or TRANSLATE
service request. Therefore, if a connection was previously given by the current
task, an additional GIVE service request is required to release ownership of the
connection.

The implicit TAKE service within the SEND, RECEIVE, and TRANSLATE
services allow facility management to be handled by the Unicenter SOLVE:CPT
TRUE management routines. Hence, the TAKE and, to some extent, GIVE facility
management services are optional.

On completion, a return code field in the AFM indicates success or failure of the
request.

Refer to the “Subroutine Calls” chapter for detailed information about the
subroutine calls for each language.

Unicenter SOLVE:CPT FTP Client Service

2–16 PL/I Programmers Guide

Unicenter SOLVE:CPT FTP Client Service
The Unicenter SOLVE:CPT FTP Client Service enables you to transfer files from
CICS to remote systems using the Internet standard File Transfer Protocol (FTP).

Unicenter SOLVE:CPT Client FTP offers the following advantages:

■ Server FTP support

■ Shortened CICS application development time

■ Multi-platform availability of a server

■ Reliability of a standard application protocol

■ Mechanism to simplify FTP client operations

The Client FTP Service provides additional built-in functions that are not
available to the other Unicenter SOLVE:CPT tools. While the SEND and
RECEIVE tools are easy to use, they still require remote system application
development. Unicenter SOLVE:CPT Client FTP applications can take advantage
of the FTP server, which is typically a component of an internet-connected host.

Just as for other Unicenter SOLVE:CPT services, client/server architecture,
protocols and error recovery are managed by CPT. Application programmers
provide minimal information and rely on Unicenter SOLVE:CPT to handle
technical issues.

Unicenter SOLVE:CPT Client FTP programs must provide:

■ Remote host name or address

■ Remote user id and password

■ Location of data

■ Operation

Depending on the programming language used, information is provided to
Unicenter SOLVE:CPT through a common data area, a copybook, or a data
structure. A call is issued within the transaction to start the data transfer. Once
the transfer is completed, control is returned to the user transaction along with
status information about the transfer.

Unicenter SOLVE:CPT Client FTP uses two CICS tasks to accomplish the
transfer. One task manages the FTP control connection. The control connection is
used to transfer commands that describe the functions to be performed, and to
handle the replies to these commands.

Unicenter SOLVE:CPT FTP Client Service

Unicenter SOLVE:CPT API Services 2–17

These FTP commands:

■ Authorize a user

■ Specify the parameters for the data connection—transfer mode,
representation type, and structure

■ Specify file system operations—store, append, rename

The second task manages the data connection that does the actual data transfer.
You can use standard defaults for transfers or you can use optional parameters to
specify data representation, directory, site commands, mode, and structure. Your
application specifies this data within an argument list and calls Unicenter
SOLVE:CPT Client FTP to execute the operation using the EXEC CICS LINK
command.

Note: Only one file can be transferred with each call, but there is no limit to the
number of requests a single transaction can perform.

Unicenter SOLVE:CPT FTP Client Service Overview

The Unicenter SOLVE:CPT FTP Client Service enables Unicenter SOLVE:CPT
user applications to use the standard File Transfer Protocol (FTP) to transfer data
files from a CICS region to a remote host. The Unicenter SOLVE:CPT FTP Client
Service is invoked from CICS programs as a callable service. It requires no end-
user interface.

Using parameters passed from the calling application, the Unicenter SOLVE:CPT
FTP Client Service:

■ Establishes a control connection with the remote host on well-known port 21

■ Completes the Telnet remote logon protocol

■ Processes any file transfer attributes to the remote server

■ Establishes a data connection with the remote server

■ Transmits the specified files to the remote server

When the Unicenter SOLVE:CPT FTP Client Service completes this sequence of
tasks, the service returns status information to the calling user application in the
argument for file transfer (AFT).

Unicenter SOLVE:CPT FTP Client Service

2–18 PL/I Programmers Guide

The following diagram shows the functional architecture of the Unicenter
SOLVE:CPT FTP Client Service, and the interaction between the Unicenter
SOLVE:CPT FTP Client Service and the user applications within the CICS
environment.

Unicenter SOLVE:CPT FTP Client Service Architecture

To invoke the Unicenter SOLVE:CPT FTP Client Service, a user application must:

■ Create the files to be transferred in a transient-data or temporary-storage
queue

■ Build an AFT

■ Perform an EXEC CICS LINK to the service

The AFT contains information that enables the Unicenter SOLVE:CPT FTP Client
Service to locate the files to be transferred and use standard FTP commands to
initiate the file transfer.

User
Application

Data
Manager

Response
Manager

Control
Manager FTP

Server

MVS

CICS

Start

C
P
T

T
C
P

T

C

P Control Connection

Data Connection

Local Host Remote Host

Security Program

Unicenter SOLVE:CPT API Services 2–19

Security Program
Unicenter SOLVE:CPT provides security through a security program for user
evaluation of requests via IP address or User ID/Password for the services of
local listeners/servers. If a security program is implemented, the user program is
invoked for each connection request. The user program can be specified for each
listener if desired. The appropriate server transaction is initiated if authorized by
the user security program. Otherwise, the client is notified that the connection is
terminated.

To implement the security program, the SCTYEXIT=program-name must be coded
in the T09MCICS macro or the T09MLSTN macro of the T09CONFG
Configuration Table. This user program is CICS LINKed during the connection
process and must conform to CICS coding standards since you must it as a
Processing Program Table (PPT) entry.

■ If no SCTYEXIT parameter is coded in the Configuration table, all connection
requests are authorized and the user ID will be the same as the Listener
transaction

■ If SCTYEXIT is coded but the program is missing or is disabled, no
connections is permitted

Note: Invoking the Administrator Interface panel for the Configuration Table
can check the second condition. However, the security program is displayed only
if it is disabled or if it is not in the PPT.

Each Listen tool or user-written listener can specify its own security program. If
the Listen tool or the user written listener does not specify a security program
and the SCTYEXIT parameter is coded on the T09MCICS configuration macro,
then that program is used as the security program.

Typically, a security program is called only when either the ACMTRNID is
specified or a user-written listener sets the ACMLTRAN option. However, by
coding SCTYTYPE=MANDTORY and SCTYEXIT=program-name on the
T09MCICS configuration macro, the security program will be executed before
returning control to the user-written listener.

Normally a security program is invoked only when a server transaction is
automatically started within the Unicenter SOLVE:CPT Listen service as a result
of one of the following:

■ The transaction was specified in ACMTRNID

■ The transaction was dynamically obtained from Client Data (ACMOPTNS =
ACMLTRAN and ACMTIMEO >0)

■ A T09MLSTN macro for the Listen Tool specified either a TRANID
parameter or a CLNTIME parameter

Security Program

2–20 PL/I Programmers Guide

In other client/server designs, the application receives control when the
connection is made and should make any desired security checks before
beginning server activity. However, by coding SCTYTYPE=MANDTORY and
SCTYEXIT=program-name on the T09MCICS configuration macro, the security
program is executed before returning control to the application.

Security Program

The user security program is responsible not only for making the determination
of whether a connection is authorized, but also for any desired logging or other
capture of unauthorized requests. Because the program is driven for each
connection on a listener, performance implications should be considered in
designing security programs.

When security is specified in the Configuration table, a new transaction is started
(the program is T09TLST2 with transaction ID IPT2). This transaction then CICS
links to the specified security program. The program is passed the Security
Communications Block (SCB). It contains fields used to determine the validity of
the connection. One of the fields in the SCB is the token of the connection. The
token can be used to initiate SEND and RECEIVE calls in order to communicate
with the remote client to determine a user ID, password, or any other identifying
characteristics. Any of the other fields in the SCB may be used as well.

Upon return from the security program, four fields are used from the SCB:

■ The authorization switch authorizes the connection by setting a character 1 in
the field

■ The terminal facility specifies a CICS term ID to associate with the new
transaction to be STARTed

■ If the user ID field is specified, the new transaction is STARTed with that
user ID

■ The transaction to be started can also be modified by the security program
and then that specified transaction is STARTed

Note: When term ID and user ID are specified, any CICS security for the term ID
and user ID are in effect.

The security program can perform additional SEND and RECEIVE calls to
request and retrieve data. This data might be some form of user ID or password.
The program could then verify the user ID and password with the EXEC CICS
VERIFY command. If the user ID is returned in the SCB, the new transaction is
started with EXEC CICS START USERID (user ID).

Security Program

Unicenter SOLVE:CPT API Services 2–21

The Security Communications Block

The connection process transaction and the user security program communicate
through the Security Communications Block (SCB). Unicenter SOLVE:CPT
provides information about the request and its origin. The user security program
determines whether the request is authorized and, optionally the name of a
terminal facility or user ID to associate with a STARTed server transaction. A
DSECT of the SCB for assembler programs may be generated with the
T09DSCTY macro.

This is what the T09DSCTY DSECT control block looks like in assembler
language:
Name Operation Operands Description

SECPARM DSECT
SECTRAN DS CL4 SERVER TRANSACTION REQUESTED
SECDATA DS XL40 REQUESTOR DATA
SECSTRT DS CL2 HOW TASK IS TO BE STARTED
SECICTM DS XL6 INTERVAL CONTROL TIME
SECADRS DS 0CL8 REQUESTOR ADDRESS
SECAFAM DS H DOMAIN
SECRPRT DS H PORT
SECRHST DS F HOST IP ADDRESS
SECACTN DS CL1 PERMIT/PROHIBIT SWITCH
SECPRMT EQU C’1’ ..OKAY, INITIATE TASK
 DS X RESERVED
SECTMID DS CL4 ANY ASSOCIATED CICS TERMINAL
SECLPRT DS H LOCAL SERVER PORT
SECUSER DS CL8 USER ID
 DS CL512 RESERVED
SECTOKN DS F TOKEN - ENDPOINT
SECLHST DS F LOCAL HOST
*
SECLEN EQU *-&LABEL LENGTH OF SECURITY DATA AREA

Security Program

2–22 PL/I Programmers Guide

Security Communications Block

Field Format Description

SECTRAN 4-byte character Requested server transaction, maybe modified by
the program.

SECDATA 40-byte
character

Client data, if available.

SECSTRT 2-byte character Method of server initiation: KC, TC, or IC.

SECICTM 6-byte character IC Hours, Minutes, Seconds.

SECAFAM 2-byte binary Address family: Inet domain=2.

SECRPRT 2-byte binary Client remote port number.

SECRHST 4-byte binary Client remote host IP address.

SECACTN 1-byte character Authorization switch:
■ 1=accept
■ 0=fail

SECTMID 4-byte character Associated terminal facility.

SECLPRT 2-byte binary Requested server local port.

SECUSER 8-byte binary Returned user ID

SECTOKN 4-byte binary Token that represents the TCP connection.

SECLHST 4-byte binary Local host IP address.

Sample Unicenter SOLVE:CPT API Pseudo Code

Unicenter SOLVE:CPT API Services 2–23

Sample Unicenter SOLVE:CPT API Pseudo Code
This section provides examples of pseudo code for client and server applications.

Client Application Example

A CICS program is required to:

■ Send and receive data to a server application residing on a workstation. The
CICS application reads and writes to temporary storage.

■ Initiate the connection and send the first packet.

The workstation or server’s IP host name is SATURN and the well-known port
address on that machine is 1234. The server’s data representation is ASCII.
The server application expects data from the client and responds with data.

The CICS client application attempts to establish a connection with the server
before processing any data. The client application reads temporary storage, then
translates the data into ASCII before sending it to the server. The client
application is then required to receive a response from the server. The data
received must be translated into EBCDIC before it can be written to temporary
storage. The application loops until all data is processed, then closes the
connection gracefully. Any unexpected error causes the connection to terminate
abnormally.
.

. Working Storage

.
Define Storage for Connection Management Argument
Define Storage for Data Transfer Argument
Define Storage for Data Translation Argument
Define Storage for Connection Release Argument
.
. Initialize Connection Management Argument and issue CONNECT service.
.
Set transport protocol to connection-mode (TCP).
Set server well-known port to 1234.
Set server IP host name to 'SATURN'.
Call CONNECT service with Connection Management Argument.
Check CONNECT service Return Code.
If Return Code not zero, then log error and GOTO RETURN.
.
. Retrieve connection Token.
.
Copy TOKEN from Connection Management Argument.
.
. Read Temporary Storage Queue and check for end of queue.
.
READ_NEXT_TS label:
EXEC CICS READQ TS QUEUE(tsqname1) SET() LENGTH()
If Handle Condition is QEMPTY, then GOTO CLOSE_ORDERLY.
If Handle Condition error, then GOTO CLOSE_ABORTIVE.

Sample Unicenter SOLVE:CPT API Pseudo Code

2–24 PL/I Programmers Guide

.

. Initialize Data Translation Argument and issue TRANSLATE service.

.
Set connection TOKEN.
Set translation from EBCDIC to ASCII.
Set address of translation data buffer.
Set length of translation data buffer.
Call TRANSLATE service with Data Translation Argument.
Check TRANSLATE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Initialize Send Data Transfer Argument and issue SEND service.
.
Set connection TOKEN.
Set address of send data buffer.
Set length of send data buffer.
Call SEND service with Data Transfer Argument.
Check SEND service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Initialize Receive Data Transfer Argument and issue RECEIVE service.
.
Set connection TOKEN.
Set address of receive data buffer.
Set length of received data buffer.
Call RECEIVE service with Data Transfer Argument.
Check RECEIVE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Retrieve length of network data RECEIVE service processed.
.
Copy RECEIVE service data length from Data Transfer Argument.
.
. Initialize Data Translation Argument and issue TRANSLATE service.
.
Set connection TOKEN.
Set translation from ASCII to EBCDIC.
Set address of translation data buffer.
Set length of translation data buffer.
Call TRANSLATE service with Data Translation Argument.
Check TRANSLATE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Write Data to Temporary Storage Queue.
.
EXEC CICS WRITEQ TS QUEUE(tsqname2) SET() LENGTH()
If Handle Condition error, then GOTO CLOSE_ABORTIVE.
.
. Loop application for more temporary storage data.
.
GOTO READ_NEXT_TS.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ORDERLY label:
Set connection TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO RETURN.

Sample Unicenter SOLVE:CPT API Pseudo Code

Unicenter SOLVE:CPT API Services 2–25

.

. Initialize Connection Release Argument and issue CLOSE service.

.
CLOSE_ABORTIVE label:
Set connection TOKEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
.
. Terminate Task
.
RETURN label:
EXEC CICS RETURN

Server Application Example 1
A CICS program is required to receive and send data from a client application.
The CICS server application listens for connection indications and then echoes
any received data back to the client. Termination of the server application is
determined by a CICS or API (transport provider) shutdown condition.

The CICS server application listens for connection indications on well-known
port 2000. This server application handles data transfer in-stream and does not
initiate additional client connections until the current connection is terminated.
Therefore, this is a single-threaded server application. The application loops
within the Unicenter SOLVE:CPT receive/send logic until a Unicenter
SOLVE:CPT release indication is determined and then closes the connection
gracefully.

Note: Any unexpected error while receiving and sending data causes the
connection to terminate abnormally.

The LISTEN service request returns two tokens:

■ One token represents the data transfer connection—used with send and
receive processing

■ The other token represents the server connection—the listen token can only
be used during task termination

.

. Working Storage

.
Define Storage for Connection Management Argument
Define Storage for Data Transfer Argument
Define Storage for Connection Release Argument
.
. Initialize Connection Management Argument and issue LISTEN service.
.
Set transport protocol to connection-mode (TCP).
Set server well-known port to 2000.
LISTEN_LOOP label:
Call LISTEN service with Connection Management Argument.
Check LISTEN service Return Code.
If Return Code equal CICS shutdown, then GOTO CLOSE_LISTEN.
If Return Code equal API shutdown, then GOTO CLOSE_LISTEN.
If Return Code unknown, then log error and GOTO CLOSE_LISTEN.

Sample Unicenter SOLVE:CPT API Pseudo Code

2–26 PL/I Programmers Guide

.

. Retrieve Data Transfer Connection and Listen Tokens.

.
Copy DT_TOKEN from Connection Management Argument.
Copy LISTEN_TOKEN from Connection Management Argument.
.
. Initialize Receive Data Transfer Argument and issue RECEIVE service.
.
ECHO_LOOP label:
Set connection DT_TOKEN.
Set address of receive data buffer.
Set length of received data buffer.
Call RECEIVE service with Data Transfer Argument.
Check RECEIVE service Return Code.
If Return Code equal RELEASE, then GOTO CLOSE_ORDERLY.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Retrieve length of network data RECEIVE service processed.
.
Copy RECEIVE service data length from Data Transfer Argument.
.
. Initialize Send Data Transfer Argument and issue SEND service.
.
Set connection DT_TOKEN.
Set address of send data buffer.
Set length of send data buffer.
Call SEND service with Data Transfer Argument.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Loop application for more client data.
.
GOTO ECHO_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ORDERLY label:
Set connection DT_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO SERVER_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ABORTIVE label:
Set connection DT_TOKEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO SERVER_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_LISTEN label:
Check for LISTEN_TOKEN.
If no LISTEN_TOKEN, then GOTO RETURN.
Set connection LISTEN_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
 If Return Code error, then log error.

Sample Unicenter SOLVE:CPT API Pseudo Code

Unicenter SOLVE:CPT API Services 2–27

.

. Terminate Task

.
RETURN label:
EXEC CICS RETURN

Server Application Example 2

This example shows a multithreaded CICS server application where the CICS
server application listens for connection indications and starts a data processing
transaction. Termination of the server application is determined by a CICS or
API (transport provider) shutdown condition.

The CICS server application listens for connection indications on well-known
port 3000. Once a connection is established, the connection management GIVE
service is issued to release ownership of the connection. A CICS START
command is then issued for a data processing transaction.

Note: Any unexpected error causes the data transfer connection to terminate
abnormally.

The LISTEN service request returns two tokens, one token represents the data
transfer connection and the other represents the server connection. The data
transfer token is passed to the data processing transaction, while the listen token
can only be used during task termination.
.

. Working Storage

.
Define Storage for Connection Management Argument
Define Storage for Facility Management Argument
Define Storage for Connection Release Argument
.
. Initialize Connection Management Argument and issue LISTEN service.
.
Clear Server Listen Token DT_TOKEN
Set transport protocol to connection-mode (TCP).
Set server well-known port to 3000.
LISTEN_LOOP label:
Call LISTEN service with Connection Management Argument.
Check LISTEN service Return Code.
If Return Code equal CICS shutdown, then GOTO CLOSE_LISTEN.
If Return Code equal API shutdown, then GOTO CLOSE_LISTEN.
If Return Code unknown, then log error and GOTO CLOSE_LISTEN.
.
. Retrieve Data Transfer Connection and Listen Tokens.
.
Copy DT_TOKEN from Connection Management Argument.
Copy LISTEN_TOKEN from Connection Management Argument.
.
. Initialize Facility Management Argument and issue GIVE service.
.
Set connection DT_TOKEN.
Call GIVE service with Facility Management Argument.
Check GIVE service Return Code.
If Return Code error, then log error GOTO CLOSE_ABORTIVE.

Sample Unicenter SOLVE:CPT API Pseudo Code

2–28 PL/I Programmers Guide

.

. Start Data Transfer Transaction.

.
 EXEC CICS START TRANSID(transid) FROM(DT_TOKEN) LENGTH(4)
If Handle Condition error, then GOTO CLOSE_ABORTIVE.
.
. Loop for additional connection indications.
.
GOTO LISTEN_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ABORTIVE label:
Set connection DT_TOKEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO LISTEN_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_LISTEN label:
Check for LISTEN_TOKEN.
If no LISTEN_TOKEN, then GOTO RETURN.
Set connection LISTEN_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
.
. Terminate Task
.
RETURN label:
EXEC CICS RETURN

Sample Unicenter SOLVE:CPT API Pseudo Code

Unicenter SOLVE:CPT API Services 2–29

Server Application Example 3

This example shows a data processing program associated with a multithreaded
server application. A server program initiates the transaction after a client
connection is established. The program is responsible for processing data
associated with a connection.

The TAKE service is an optional facility and is provided implicitly through the
SEND, RECEIVE, and TRANSLATE services.

The application loops within the Unicenter SOLVE:CPT receive/send logic until
a Unicenter SOLVE:CPT release indication is determined, then closes the
connection gracefully. Any unexpected error while receiving and sending data
causes the connection to terminate abnormally.
.
. Working Storage
.
Define Storage for Facility Management Argument
Define Storage for Data Transfer Argument
Define Storage for Data Translation Argument
Define Storage for Connection Release Argument
.
. Obtain Data Transfer Token for Server Transaction.
.
EXEC CICS RETRIEVE FROM(TOKEN) LENGTH(4)
If Handle Condition error, then GOTO CLOSE_ABORTIVE.
.
. Initialize Facility Management Argument and issue TAKE service.
.
Set connection TOKEN.
Call TAKE service with Facility Management Argument.
Check TAKE service Return Code.
If Return Code error, then log error GOTO CLOSE_ABORTIVE.
.
. Initialize Receive Data Transfer Argument and issue RECEIVE service.
.
RECV_LOOP label:
Set connection TOKEN.
Set address of receive data buffer.
Set length of received data buffer.
Call RECEIVE service with Data Transfer Argument.
Check RECEIVE service Return Code.
If Return Code equal RELEASE, then GOTO CLOSE_ORDERLY.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Retrieve length of network data RECEIVE service processed.
.
Copy RECEIVE service data length from Data Transfer Argument.
.
. Initialize Data Translation Argument and issue TRANSLATE service.
.
Set connection TOKEN.
Set translation from ASCII to EBCDIC.
Set address of translation data buffer.
Set length of translation data buffer.
Call TRANSLATE service with Data Translation Argument.
Check TRANSLATE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.

Sample Unicenter SOLVE:CPT API Pseudo Code

2–30 PL/I Programmers Guide

.

. Application to process input and determine output.

.

.

. Initialize Data Translation Argument and issue TRANSLATE service.

.
Set connection TOKEN.
Set translation from EBCDIC to ASCII.
Set address of translation data buffer.
Set length of translation data buffer.
Call TRANSLATE service with Data Translation Argument.
Check TRANSLATE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Initialize Send Data Transfer Argument and issue SEND service.
.
Set connection TOKEN.
Set address of send data buffer.
Set length of send data buffer.
Call SEND service with Data Transfer Argument.
Check SEND service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Loop application for more client data.
.
GOTO RECV_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ORDERLY label:
Set connection TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO RETURN.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ABORTIVE label:
Set connection TOKEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
.
. Terminate Task
.
RETURN label:
EXEC CICS RETURN

Sample Unicenter SOLVE:CPT API Pseudo Code

Unicenter SOLVE:CPT API Services 2–31

Server Application Example 4

This example is a variation of the multithreaded CICS server application shown
in Server Application 2. The CICS server application listens for connection
indications and then causes the LISTEN service to initiate a data transfer
transaction. The initiated data transfer transaction could be Server Application 3.
Termination of the server application is determined by a CICS or API (transport
provider) shutdown condition.

The CICS server application listens for connection indications on well-known
port 4000. A transaction ID is specified for the data transfer program. Once a
connection is established, the connection management GIVE service and the
CICS START command are issued from within the LISTEN service.

Return from the LISTEN service request does not occur until an error occurs. The
error could be either Unicenter SOLVE:CPT and CICS termination, or some
unexpected error. Unicenter SOLVE:CPT or CICS termination is considered
graceful termination, while anything else produces an error.
.
. Working Storage
.
Define Storage for Connection Management Argument
Define Storage for Connection Release Argument
.
. Initialize Connection Management Argument and issue LISTEN service.
.
Set transport protocol to connection-mode (TCP).
Set server well-known port to 4000.
Set Data Transactions ID.
Call LISTEN service with Connection Management Argument.
Check LISTEN service Return Code.
If Return Code equal CICS shutdown, then GOTO CLOSE_LISTEN.
If Return Code equal API shutdown, then GOTO CLOSE_LISTEN.
.
. Log LISTEN Service Unknown error
.
Log Connection Management Return Code.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_LISTEN label:
Copy DT_TOKEN from Connection Management Argument.
Check for LISTEN_TOKEN.
If no LISTEN_TOKEN, then GOTO RETURN.
Set connection LISTEN_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
.
. Terminate Task
.
RETURN label:
EXEC CICS RETURN

Unicenter SOLVE:CPT API Sample Programs

2–32 PL/I Programmers Guide

Unicenter SOLVE:CPT API Sample Programs
These sample programs are in the T09SAMP data set that was unloaded when
Unicenter SOLVE:CPT was installed. Descriptions of each program are provided
below.

This table shows the sample program name and its corresponding language:

T09SAMP
Member Name

Language Type

T09PACL1 Assembler TCP Client 1 program. Client
Application sends typed in data to
the server waiting for the
information to be echoed back from
the server.

T09PACL2 Assembler TCP Client 2 program. Client
Application to send an internal
message using either the FULL,
SEP or LL to be echoed back by the
server.

T09PAFTP Assembler FTP Client Application.

T09PCFT3 Assembler FTP Client that uses transient data
queues.

T09PASV1 Assembler TCP Server 1 program is a single-
threaded server using a Listen API
call.

T09PASV2 Assembler TCP Server 2 program is a
multithreaded server using the
Listen tool.

T09PASV3 Assembler TCP Server 3 program is multi-
threaded server using a Listen API
call with an independent EXEC
CICS START tran.

T09PASV4 Assembler TCP Server 4 program is a multi-
threaded server using a Listen API
call that has CPT internally issuing
the EXEC CICS START tran.

T09PASV5 Assembler TCP Server 5 program is a
multithreaded server using both
the Listen and SELECT tools.

T09PACLU Assembler UDP Client program.

Unicenter SOLVE:CPT API Sample Programs

Unicenter SOLVE:CPT API Services 2–33

T09SAMP
Member Name

Language Type

T09PASVU Assembler UDP Server program.

T09PCCL1 COBOL TCP Client 1 program. Client
Application sends typed in data to
the server waiting for the
information to be echoed back from
the server.

T09PCCL2 COBOL TCP Client 2 program. Client
Application to send an internal
message using either the FULL,
SEP or LL to be echoed back by the
server.

T09PCFTP COBOL FTP Client Application.

T09PCSV1 COBOL TCP Server 1 program is a single-
threaded server using a Listen API
call.

T09PCSV2 COBOL TCP Server 2 program is a
multithreaded server using the
Listen tool.

T09PCSV3 COBOL TCP Server 3 program is multi-
threaded server using a Listen API
call with an independent EXEC
CICS START tran.

T09PCSV4 COBOL TCP Server 4 program is a multi-
threaded server using a Listen API
call that has CPT internally issuing
the EXEC CICS START tran.

T09PCSV5 COBOL TCP Server 5 program is a
multithreaded server using both
the Listen and SELECT tools.

T09PCCLU COBOL UDP Client program.

T09PCSVU COBOL UDP Server program.

T09PPCL1 PL/I TCP Client 1 program. Client
Application sends typed in data to
the server waiting for the
information to be echoed back from
the server.

Unicenter SOLVE:CPT API Sample Programs

2–34 PL/I Programmers Guide

T09SAMP
Member Name

Language Type

T09PPCL2 PL/1 TCP Client 2 program. Client
Application to send an internal
message using either the FULL,
SEP or LL to be echoed back by the
server.

T09PPFTP PL/I FTP Client Application

T09PPSV1 PL/I TCP Server 1 program is a single-
threaded server using a Listen API
call.

T09PPSV2 PL/I TCP Server 2 program is a
multithreaded server using the
Listen tool.

T09PPSV3 PL/I TCP Server 3 program is multi-
threaded server using a Listen API
call with an independent EXEC
CICS START tran.

T09PPSV4 PL/I TCP Server 4 program is a multi-
threaded server using a Listen API
call that has CPT internally issuing
the EXEC CICS START tran.

T09PPCLU PL/1 UDP Client program.

T09PPSVU PL/1 UDP Server program.

T09PSCL1 C TCP Client 1 program. Client
Application sends typed in data to
the server waiting for the
information to be echoed back from
the server.

T09PSCL2 C TCP Client 2 program. Client
Application to send an internal
message using either the FULL,
SEP or LL to be echoed back by the
server.

T09PSFTP C FTP Client Application

T09PSSV1 C TCP Server 1 program is a single-
threaded server using a Listen API
call.

Unicenter SOLVE:CPT API Sample Programs

Unicenter SOLVE:CPT API Services 2–35

T09SAMP
Member Name

Language Type

T09PSSV2 C TCP Server 2 program is a
multithreaded server using the
Listen tool.

T09PSSV3 C TCP Server 3 program is multi-
threaded server using a Listen API
call with an independent EXEC
CICS START tran.

T09PSSV4 C TCP Server 4 program is a multi-
threaded server using a Listen API
call that has CPT internally issuing
the EXEC CICS START tran.

T09PSCLU C UDP Client program.

T09PSSVU C UDP Server program.

Note: The x in the fifth character in the program name denotes the programming
language from the table shown above.

Client 1 Sample Program

T09PxCL1 is an example of a client program that sends a message, (input at a
terminal) to a server program. It uses an LL (length) convention to indicate when
all data is sent. It sends the length first followed by the message. The server s
echoes back the LL and data. When the message is fully received, the client
requests an orderly close of the connection.

This program is initiated at a terminal by entering:

■ The transaction ID

■ A server transaction ID

■ A text variable

If a server transaction ID omitted, the echo port is requested. If a text variable is
omitted, a dummy message is substituted.

Unicenter SOLVE:CPT API Sample Programs

2–36 PL/I Programmers Guide

TCP Client 2 Sample Program

T09PxCL2 is an example of a client program that sends a message to a server
program and then receives it back. The Client 2 sample uses special processing
options that cause Unicenter SOLVE:CPT to format the stream data into logical
records. These SEND and RECEIVE options make logical record programming
much easier from the Unicenter SOLVE:CPT application standpoint.

These are the logical record options:

■ Logical record based on separator characters

■ Logical record based on length set in the first two data bytes

■ The receiver defines what a full record length is and waits until it receives
that amount

This program is initiated at a terminal by typing in the transaction ID followed
by an option: FULL (default), LL, or SEP. T09PxCL2 sends the data to the TCP
Echo server.

TCP Server 1 Sample Program

T09PxSV1 is an example of a server program that can be initiated either during
CICS start up or dynamically using a supplied transaction ID. The server issues a
listen on a specific port and then remains active in CICS as a long-running task.
When a client program designates the same port for a connect, Unicenter
SOLVE:CPT initiates this server for receive-and-send handshaking.

In this example, the server echoes back messages received from the client. After
the client requests an orderly release from the connection, the server goes back to
passive listening on the port. This server is single-threaded. Any subsequent
requests for its services wait until preceding clients have completed and closed
connections.

Unicenter SOLVE:CPT API Sample Programs

Unicenter SOLVE:CPT API Services 2–37

TCP Server 2 Sample Program

T09PxSV2 is an example of a server program that does not issue a listen, but
takes the connection from the original listener. Unicenter SOLVE:CPT initiates it
when a listening task detects a client request for the port number assigned to this
server.

CPTPxSV2 can be initiated directly by:

■ Another transaction that is a listening server

■ By Unicenter SOLVE:CPT from a listening transaction’s specification of
ACMTRNID in its connection management argument

■ A listener specified in a T09MLSTN statement in the Unicenter SOLVE:CPT
tool configuration table.

In this example, the server receives one or more messages from the client, then
echoes it back. When the client requests a release, or when an error occurs, the
server disconnects and goes away.

A fresh copy of the server is activated as needed.

Server 3 Sample Program

T09PxSV3 is an example of a server program that can be initiated either during
CICS start up or dynamically using a supplied transaction ID. The server issues a
listen on a specific port and continues to remain active in the system as a long-
running task. When a client transaction requests the service associated with its
port, T09PxSV3 is activated to connect with that client.

In this example, when the server is awakened to service a client, it spawns
another task to do the complex work requested by the client. This frees the long-
running server up to initiate a new listen and to respond to additional clients in a
timely manner.

This server task terminates when Unicenter SOLVE:CPT is stopped.

Server 4 Sample Program

T09PxSV4 is an example of a server program that can be initiated either during
CICS start up or dynamically using a supplied transaction ID. The server issues a
listen for a specific service, but also provides Unicenter SOLVE:CPT with a
transaction name for an independent task to be started when a client requests a
connection to the service. That task does any complex work associated with the
service, while the server continues as a long-running task that listens for
additional requests for the service.

This server task terminates when Unicenter SOLVE:CPT is stopped.

Unicenter SOLVE:CPT API Sample Programs

2–38 PL/I Programmers Guide

Server 5 Sample Program

T09PASV5 is an example receive program that uses the SELECT tool.

UDP Client Sample Program

T09PxCLU is an example of a UDP client program that calls the SENDTO service
to send a datagram, input at a terminal, to a server program that echoes the
datagram back. The default server is the UDP echo server with T09PxSVU being
the other possible destination by specifying the associated transaction ID. When
the datagram is received back from the RCVFROM service, the sample client
closes the endpoint.

UDP Server Sample Program

T09PxSVU is an example of a UDP server program that hangs a RCVFROM on a
well-known port and waits for incoming datagrams. When RCVFROM
completes, the server calls the SENDTO service to send the datagram back to its
originator.

This program should be initiated as a started transaction.

Using CA-InterTest with Unicenter SOLVE:CPT Applications

Unicenter SOLVE:CPT API Services 2–39

Using CA-InterTest with Unicenter SOLVE:CPT Applications
In order to use CA-InterTest® on application modules using Unicenter
SOLVE:CPT stub calls, the InterTest module, IN25UEXI, must be reassembled
with entries to exclude calls to the Unicenter SOLVE:CPT stubs.

The following sample JCL can be modified to meet your system requirements.
See the CA-InterTest MVS Installation and Customization Guide for a discussion on
the IN25UEXI exit.
//IN25UEXI JOB ...

//ASM EXEC PGM-IEV90,REGION=102K,
// PARM=’DECK,LIST,XREF(SHORT),ALIGN’
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD DSN=&&LOADSET,DISP=(NEW,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400,SPACE=(400,(100,100,1))
//SYSLIB DD DSN=CAI,SAMPLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
//SYSIN DD *
 IN25UEX CALL=T09FCLOS
 IN25UEX CALL=T09FXLAT
 IN25UEX CALL=T09FCONN
 IN25UEX CALL=T09FGIVE
 IN25UEX CALL=T09FLSTN
 IN25UEX CALL=T09FRCFR
 IN25UEX CALL=T09FRECV
 IN25UEX CALL=T09FSEND
 IN25UEX CALL=T09FSLCT
 IN25UEX CALL=T09FNTO
 IN25UEX CALL=T09FTAKE
*
* INSERT YOUR IN25UEX STATEMENTS FOR SPECIAL CALLS HERE
*
 IN25UEX TYPE=FINAL
 T09FCLOS DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FCONN DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FGIVE DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FLSTN DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FRCFR DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FRECV DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FSEND DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FSLCT DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FSNTO DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FTAKE DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FXLAT DC XL16’90ECD00C183F4510300E0180000058F0’

Compiling and Linking a CPT API Application

2–40 PL/I Programmers Guide

*
* INSERT ANY USER WRITTEN ROUTINE HERE
*
 END TERMINATEST THE ASSEMBLY OF IN25UEXI
/*
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
//LKED EXEC PGM=IEWL,REGION=512K,PARM=(XREF,LIST,MAP)
*
* INSERT ANY //SYSLIB STATEMENT FOR SPECIAL LOADERS HERE
*
//SYSLMOD DD DSN=CAI,CACIGSxx,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1024,SPACE=(1024,(200,200))
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD *
 ENTRY IN25UEXI
 NAME IN25UEXI(R)
//

Note: For the SYSLMOD DD statement, replace xx with the CICS release
number. For example, 41 for CICS 4.1.

Compiling and Linking a CPT API Application
Two simple updates to your existing CICS application compilation and linking
JCL are needed to support CPT/API applications:

1. In your compile step add the following DD:
cpthlq.T09MAC

The T09MAC library contains all the assembler macros, assembler DSECTs,
COBOL copybooks, C and PL/I structures needed when compiling your
CPT/API application

2. In your link step add the following DD:
cpthlq.T09LOAD

The T09LOAD library contains all the T09Fxxxx CICS TRUE stubs that are
called by your CPT/API application in order to use CPT service calls.

Note: The T09LOAD library also needs to be in your CICS startup JCL as
part of the DFHRPL concatenation.

CLOSE Service 3–1

Chapter

3 CLOSE Service

Closes an established connection. Both orderly (graceful) and abortive
termination options are supported. CLOSE performs all associated functions
required for Unicenter SOLVE:CPT resource clean up.

To invoke the CLOSE service, a user application must first build an Argument
for Close (ACL) and then issue a call to the CLOSE routine. Valid arguments
include the ACL version number, connection token, and termination options. On
completion, a return code is set to indicate success or failure of the request.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the CLOSE service call

■ Recommended ACL Parameters—Lists the parameters normally used and
recommended for the CLOSE service call

■ Usage Example—A sample shell of a program using the CLOSE service call

■ Parameter Values Returned in the ACL—List the fields that are updated in
the ACL control block upon return from the CLOSE service call

■ PL/I Structures—Provides a list and information about the distributed
sample PL/I structures that are used by the CLOSE service call

■ Sample Programs—Lists and describes the distributed sample PL/I
programs that are use the CLOSE service call along with other service calls.

■ Completion Information—Describes the expected results at completion of the
CLOSE service call

■ Return Codes—Provides a list of return codes that can apply to the CLOSE
service call

■ Usage Notes—Contains miscellaneous notes about usage of the CLOSE
service call

■ Complete Parameter List—Provides a complete list of all the parameters and
options of those parameters for the CLOSE service call

Call Syntax

3–2 PL/I Programmers Guide

Call Syntax
CALL T09FCLO (CPT_ACL);

Recommended ACL Parameters
The following table contains the recommended parameters to use with the
CLOSE service. These parameters are set within the ACL control block. See PL/I
Structures for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Field name Description

ACLOPTNS Set to ACLOPT_ORDER indicating a graceful termination and
implements orderly release of the TCP/IP connection.

ACLTOKEN Connection or endpoint token.

ACLVERS Version number set to two (2).

Usage Examples
The following examples include a subset of the actual statements required to use
a CLOSE call. It is always recommended that you use the graceful approach
unless a network error makes it necessary to abort the connection.

Graceful Close Both ends of a session follow the FIN, ACK-FIN shutdown
process to terminate a session.

Abortive Close A reset is generated terminating the session.

 When errors show that a connection may be corrupt, an
abortive close always works.

Important! Data may be lost when an abortive close is used.

To view a more complete sample, see Sample Programs.

Usage Examples

CLOSE Service 3–3

Graceful Close

This example establishes a connection, processes data, and closes the connection.
The token is loaded from the Argument for Connection Management (ACM) and
used by all of the following Unicenter SOLVE:CPT service requests. The token is
set before issuing the CLOSE call. No termination option is specified, so orderly
release is selected as the default.

The ACLRTNCD field is checked on return from the CLOSE service and, if
successful, no error is logged.

Note: The statements related to the example are in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FCLO)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (CPTPRT,MSGPRT) POINTER;
DCL 1 CPT_ACL,
 %INCLUDE SYSLIB(T09KPACL);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
%INCLUDE T09KPCON;
 /*
 CPT Connection Management service request
 */
 ADTTOKEN, ACLTOKEN = ACMTOKEN;
 /*
 Application and CPT Data Transfer (SEND/RECV) service request
 */
 /*
 CPT Orderly Connection Release service request
 */
 ACLOPTNS = ACLOPT_ORDER;
 CALL T09FCLO (CPT_ACL);
 IF ACLRTNCD ^= 0
 THEN DO;
 /*
 Process and log CLOSE error
 */
 END;
 /*
 Terminate transaction
 */
 EXEC CICS RETURN;

Usage Examples

3–4 PL/I Programmers Guide

Abortive Close

This example establishes a connection, receives an error while processing data
and aborts the connection. The ACL version and token are specified. The ACL
abort option ACLOPT_ABORT is selected to indicate the type of connection
termination required.

The ACLRTNCD field is checked on return from the CLOSE service to
determine request completion status.

Note: The statements related to the example are in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FCLO)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (CPTPRT,MSGPRT) POINTER;
DCL 1 CPT_ACL,
 %INCLUDE SYSLIB(T09KPACL);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
%INCLUDE T09KPCON;
 /*
 CPT Connection Management service request
 */
 ADTTOKEN, ACLTOKEN = ACMTOKEN;
 /*
 Application and CPT Data Transfer (SEND/RECV) service request
 */
 /*
 CPT Abortive Connection Release service request
 */
 ACLOPTNS = ACLOPT_ABORT;
 CALL T09FCLO (CPT_ACL);
 IF ACLRTNCD ^= 0
 THEN DO;
 /*
 Process and log CLOSE error
 */
 END;
 /*
 Terminate transaction
 */
 EXEC CICS RETURN;

Parameter Values Returned in the ACL

CLOSE Service 3–5

Parameter Values Returned in the ACL
After the CLOSE service call returns control to your application program, the
following fields are propagated with connection termination information. These
updated values are passed back to the application in the ACL control block.

Field Name Description

ACLRTNCD Return code.

ACLDGNCD Diagnostic code.

PL/I Structures
Sample PL/I structures are provided in the distributed software and are
available to you in cpthlq.T09MAC. Variable field names contained in the
distributed samples and the examples in this guide refer to these structures.

T09KPACL PL/I structure name for the ACL. For detailed information
and a sample copy of the PL/I structure, see the ACL:
Argument for CLOSE Used by the CLOSE Service section
in appendix “Control Block Layouts.”
Note: An excerpt of the PL/I constants that apply to ACM
calls immediately follows the ACM in the appendix.

T09KPCON The PL/I structure name for PL/I constants that apply to
the various service calls. For detailed information and a
sample copy of the PL/I copybook see T09KPCON: PL/I
Call Constants Copybook section of the appendix “Control
Block Layouts.”

Sample Programs

3–6 PL/I Programmers Guide

Sample Programs
Sample PL/I source code is provided for your use. You should be able to find a
sample that matches your programming requirement. For more complete details
on which functions a sample program provides, see the program descriptions in
the “Unicenter SOLVE:CPT API Services” chapter and the comments at the
beginning of the sample members listed in the following table. These sample
program members are available in the distributed software in the
cpthlq.T09SAMP library.

Name Description

T09PPCL1 TCP Client 1 program.

T09PPCL2 TCP Client 2 program.

T09PPSV1 TCP Server 1 program is a single-threaded server using a Listen
API call.

T09PPSV2 TCP Server 2 program is a multithreaded server using the LISTEN
tool.

T09PPSV3 TCP Server 3 program is multithreaded server using a Listen API
call with an independent EXEC CICS START tran.

T09PPSV4 TCP Server 4 program is a multithreaded server using a Listen API
call that has CPT internally issuing the EXEC CICS START tran.

Completion Information
The CLOSE service completes normally when the connection is terminated and
associated resources are released.

Graceful termination waits for all pending transport provider SEND and
RECEIVE requests to complete and then waits for both ends of the full-duplex
connection to close. This waiting can last up to the number of seconds specified
by the ACLTIMEO linger value.

Abortive termination closes the transport provider connection without regard to
pending transport provider requests.

WARNING! An abortive termination may cause data loss and should be used only when
data integrity is not required.

On normal return to the application program, the general return code in
ACLRTNCD is set to zero (CPTIRCOK). The diagnostic code in register zero
(ACLDGNCD) is always zero.

Return Codes

CLOSE Service 3–7

If the CLOSE service completes abnormally, some user data may be lost.
The general return code (ACLRTNCD) in register 15, and the diagnostic code
(ACLDGNCD) in register zero indicate the nature of the failure. The diagnostic
code may contain a specific code identifying a particular transport provider
error. The diagnostic code is normally referred as the error number or just
ERRNO, and can be referenced as any EZASOKET call ERRNO.

Return Codes
The CLOSE service returns a code in registers R15 and R0 indicating the results
of the execution. These values are in the ACMRTNCD (R15) and ACMDGNCD
(R0) described in the appendix “Return Codes.” The diagnostic code may be an
ERRNO, CICS abend code or other value depending on the return code.

This structure is available in the distributed software in cpthlq.T09MAC in
member T09KPRCS. See the appendix “Return Codes” for a sample copy of the
T09KPRCS structure. A description of the problem causing the associated return
code is contained in this structure is.

The following table lists the return codes that can apply to the CLOSE call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

17 11 No CPTEVERS Control block version number
not supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

24 18 No CPTECOPT Invalid Close mode specification.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other TPL environmental
condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

Return Codes

3–8 PL/I Programmers Guide

Decimal Hex Diagnostic
Code

Variable Description

68 44 Yes CPTEDISC Remote connection not available
or aborted.

 Yes CPTEINTG Transport provider API integrity
error.

72 48 Yes CPTEPRGE Remote connection environment
terminating.

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination.
Note: The diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

Usage Notes

CLOSE Service 3–9

Usage Notes
The CLOSE service terminates an established transport provider endpoint and
releases associated resources. Established transport provider connections can be
half of a TCP connection, a TCP listening endpoint, or a UDP endpoint, and are
represented by a token.

The CLOSE service uses the ACL and requires the application to set the ACL
version number and token fields. Optional control information related to
termination processing can be specified. The address of the ACL is required to be
loaded into register one before the CLOSE service.

The version number, ACLVERS, indicates the Unicenter SOLVE:CPT release
level in which this user application program is written. This required field must
be set to two (2) and is validated by the CLOSE service before it processes the
request.

The function code, ACLFUNC, indicates the Unicenter SOLVE:CPT callable
service ID. The field is not initialized by a user application program and has little
value to the application except for dump analysis. The function code can identify
and map an argument list with the error or trace log and dump analysis.

The token, ACLTOKEN, indicates the connection and internal resources that will
be released. This is a required field and is validated by the CLOSE service before
processing the request.

The ACLOPNTS field specifies CLOSE processing control options and provides a
mechanism for event notification on return to the application program.
Currently, only two options (ACLOPT_ ORDER and ACLOPT_ABORT) are
supported; no facility exists for CLOSE event notification, except by way of
return code values.

The notion of an orderly close in BSD sockets is to wait a specified amount of
time, so that the other end of the connection can finish receiving data before
closing down the connection. This is what the ACLTIMEO value is used for by
the CLOSE service when the ACLOPT_ORDER option is specified.

If the option code ACLOPT_ORDER is selected, the CLOSE service performs a
graceful termination. A graceful termination waits for all pending transport
provider SEND and RECEIVE requests to complete and then waits for both ends
of the full-duplex connection to close. This waiting lasts for the linger value
before closing the connection. The ACLTIMEO field defines the linger value. This
may require the CLOSE service to block the application. This option then
performs an orderly release of the TCP/IP connection.

Graceful termination using the ACLOOPT_RDER option is the preferred
mechanism for connection termination.

Complete Parameter List

3–10 PL/I Programmers Guide

If the option code ACLOPT_ABORT is selected, the CLOSE service terminates
the connection and no attempt is made to preserve data in transit. The remote
user receives a disconnect indication.

WARNING! An abortive termination may cause data loss and should be used only when
data integrity is not required.

Complete Parameter List
Note: For a recommended list of parameters, see Recommended ACL
Parameters earlier in this chapter.

ACLDGNCD Diagnostic code. Indicates the diagnostic code set by the service request. This
value generally indicates a transport provider return code.

Default: None.

ACLFUNC Function code. Indicates the function or callable service ID requested by the
application program. This field is not set by the application, but is initialized by
the Task-Related User Exit (TRUE) interface stub program.

Default: None.

ACLOPTNS Specifies CLOSE processing control options.

Supported options:

ACLOPT_ABORT Indicates abortive termination and option implements a
disconnect or reset of the TCP/IP connection. Typically,
used after an unrecoverable application error occurs.

 WARNING! An abortive termination may cause data loss and
should be used only when data integrity is not required.

ACLOPT_ORDER Indicates a graceful termination and implements orderly
release of the TCP/IP connection.

 Note: This is the preferred option for terminating a
connection.

ACLOPT_SHUT0 Not currently supported. Shutdown the socket for
RECEIVES. If ACMSTATS was set to ACMSTATS_TERM, a
message is generated.

Complete Parameter List

CLOSE Service 3–11

ACLOPT_SHUT1 Not currently supported. Shuts down the socket for
SENDS. If ACMSTATS was set to ACMSTATS_TERM, then
a message is generated.

ACLOPT_SHUT2 Not currently supported. Shutdown the socket for
RECEIVES and SENDS. If ACMSTATS was set to
ACMSTATS_TERM, then a message is generated.

Note: The notion of orderly or abortive CLOSE for a UDP endpoint is
meaningless and the options specified when calling CLOSE for a UDP token are
not important. Unicenter SOLVE:CPT knows if the token is UDP and closes it
properly.

Default: ACLOPT_ORDER.

ACLRTNCD Return code. Indicates the return code set by the CLOSE service. This value is
also returned in register 15 and indicates the success or failure of the service.

Default: None.

ACLTIMEO Specifies the time to wait (linger) on an orderly (ACLOPT_ORDER) CLOSE
request. This orderly close is also known as a graceful termination. If this value is
not specified on an orderly CLOSE request, the value specified with the
LINGER= keyword on the T09MCICS configuration macro within the Solve:
configuration table is used. For more information about setting the linger value,
see the “Configuration Reference” chapter of the Administrator Guide.

Default: One (1).

ACLTOKEN Required. Connection or endpoint token. Specifies a token that represents a TCP
connection, a TCP listening end point, or a UDP end point. A token is created by
the TCP connection initiation routines or by the UDP data transfer and endpoint
creation routines.

Default: None.

ACLVERS Required. Version number. Indicates the Unicenter SOLVE:CPT version number
of the argument list used by the calling program.

Note: Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

CONNECT Service 4–1

Chapter

4 CONNECT Service

This service provides a client facility for use by an application program.
The CONNECT service establishes a session with the local transport provider;
then actively connects to a server. When connection is established with a server,
the CONNECT service returns control to the calling program. Information
related to the connection is updated and returned within the argument for
connect management (ACM).

To invoke the CONNECT service, a user application is required to first build an
ACM and then issue a call to the CONNECT routine. The minimum information
required by this service is server host address, and well-known server port.
Optional information related to data transfer buffering, statistics and subtask
initialization can be specified.

This chapter discusses these topics:

■ Call Syntax—Shows sample syntax for the CONNECT service call

■ Recommended ACM Parameters—Lists the parameters typically used and
recommended for the CONNECT service call

■ Usage Example—Provides a sample shell of a program using the CONNECT
service call

■ Parameter Values Returned in the ACM—Lists the fields that are updated in
the ACM control block upon return from the CONNECT service call

■ PL/I Structures—Provides a list and information about the distributed
sample PL/I structures used by the CONNECT service call.

■ Sample Programs—Lists and describes the distributed sample PL/I
programs that use the CONNECT service call along with other service calls

■ Completion Information—Describes the expected results at completion of the
CONNECT service call

■ Return Codes—Lists the return codes that can apply to the CONNECT
service call

■ Usage Notes—Provides miscellaneous notes about the CONNECT service
call usage

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the CONNECT service call parameters and their options

Call Syntax

4–2 PL/I Programmers Guide

Call Syntax
CALL T09FCON (CPT_ACM);

Recommended ACM Parameters
The following table contains the recommended parameters to use with the
CONNECT service. These parameters are set within the ACM control block; see
the PL/I Structures for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Field Name Description

ACMOPTN1 Connection Initialization Options—Set to ACMOPTN1_NODNR.

ACMRADDR Remote IP Host Address in hexadecimal.

ACMRPORT Remote Well-Known Service Port.

ACMVERS Version number should be set to ACMVERSN(binary 2).

A character text dot format IP address such as 123.234.123.234 can be set in the
ACMRNAME field rather than using the ACMRADDR field.

Usage Example

CONNECT Service 4–3

Usage Example
In the following example, a subset of the actual statements required is shown to
emphasize the use of a CONNECT call.

In this example:
■ A simple client ACM is built and the CONNECT request is performed
■ The application program sets the remote server port number to 1234
■ The remote IP address to connect to is placed in the ACMRNAME field
■ The CONNECT service is called
■ Control is returned from the CONNECT service on establishment of a

connection or by some error
■ The ACMRTNCD field is tested to determine the success of the request
■ If the ACMRTNCD field is non-zero, an error has occurred and the

diagnostic code indicates the reason for failure.
If the ACMRTNCD field is zero, the CONNECT service completes
successfully and a token representing the data transfer connection is
returned

■ The token ACMTOKEN is used for all Unicenter SOLVE:CPT requests
related to the connection.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FCON)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (CPTPRT,MSGPRT) POINTER;
DCL 1 CPT_ACM,
 %INCLUDE SYSLIB(T09KPACM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
%INCLUDE T09KPCON;
 /*
 CPT CONNECT Connection Management service request
 */
 ACMRPORT = 1234;
 ACMRNAME = '123.234.123.234';
 CALL T09FCON (CPT_ACM);
 IF ACMRTNCD ^= 0
 THEN DO;
 /*
 Process and log CONNECT error
 Terminate transaction
 */
 END;
 ADTTOKEN, ACLTOKEN = ACMTOKEN;
 /*
 Application and CPT Data Transfer (SEND/RECV) service request
 */
 /*
 CPT Connection Release service request
 */
 /*
 Terminate transaction
 */
 EXEC CICS RETURN;

Parameter Values Returned in the ACM

4–4 PL/I Programmers Guide

Parameter Values Returned in the ACM
After the CONNECT service call returns control to your application program, the
following fields are propagated with valid established connection information.
These updated values are passed back to the application in the ACM control
block.

Field Name Description

ACMDGNCD Diagnostic Code.

ACMLADDR Local IP Host Address.

ACMLNAME Local IP Host Name.

ACMLPORT Client Application Port.

ACMMRECV API receive buffer size.

ACMMSEND API send buffer size.

ACMQRECV API receive queue size, set to one.

ACMQSEND API send queue size, set to one.

ACMRADDR Remote IP Host Address.

ACMRTNCD Return Code.

ACMTOKEN Token—Connection or endpoint.

PL/I Structures

CONNECT Service 4–5

PL/I Structures
Sample PL/I structures are provided in the distributed software and are
available to you in cpthlq.T09MAC. Variable field names contained in the
distributed samples and the examples in this guide refer to these structures.

T09KPACM PL/I structure name for the ACM. For detailed information
and a sample copy of the PL/I structure, see the ACM:
Argument for Connection Management Used by
CONNECT and LISTEN Calls section in the appendix
“Control Block Layouts.”

 Note: An excerpt of the PL/I constants that apply to ACM
calls immediately follows the ACM in the appendix.

T09KPCON The PL/I structure name for PL/I constants that apply to
the various service calls. For detailed information and a
sample copy of the PL/I copybook see T09KPCON: PL/I
Call Constants Copybook section of the appendix “Control
Block Layouts.”

Sample Programs

4–6 PL/I Programmers Guide

Sample Programs
Sample PL/I source code is provided for your use. You should be able to find a
sample that matches your programming requirement. For more complete details
on which functions a sample program provides, see the program descriptions in
the “Unicenter SOLVE:CPT API Services” chapter and the comments at the
beginning of the sample members listed below. These sample program members
are available in the distributed software in the cpthlq.T09SAMP library.

Name Description

T09PPCL1 Client application sends typed in data to the server
waiting for the information to be echoed back from the
server.

T09PPCL2 Client application to send an internal message using
either the FULL, SEP or LL to be echoed back by the
server.

Completion Information
The CONNECT service completes normally when a connection with a remote
server is established. The CONNECT service initializes the client environment
with the transport provider (API) and actively contacts a remote server and then
updates connection information within the ACM control block.

When a connection is successfully established the ACM control block is updated
with information related to the connection. The local and remote port,
IP address, and host names are resolved and available in the ACM. The ACM
return code ACMRTNCD should be checked to determine the success or failure
of the CONNECT service. A zero (0) return code indicates a successful
connection. When Unicenter SOLVE:CPT successfully establishes a client
connection a non-zero token will be returned in the ACMTOKEN field. This
token can be passed in subsequent Unicenter SOLVE:CPT calls (SEND,
RECEIVE, GIVE, and so on) in the token field.

The return and diagnostic codes should be interpreted by the application to
determine the reason for failure. Errors indicating CPT, the transport provider
(API), or CICS termination are minor. Errors should be interrogated for level of
severity.

Return Codes

CONNECT Service 4–7

Return Codes
The CONNECT service returns codes indicating the results of the execution.
These values are in the ACMRTNCD (R15) and ACMDGNCD (R0) described in
the appendix ”Return Codes.” The diagnostic code typically indicates the
transport provider return code, better known as Error Number or ERRNO.

A sample PL/I structure is provided in cpthlq.T09MAC, in member T09KPRCS.
It details the variable field names contained in the distributed samples and the
examples in this guide. See the appendix “Return Codes” for a sample copy of
the T09KPRCS structure. A description of the problem causing the associated
return code is contained in this structure.

The following table lists the return codes that can apply to the CONNECT call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

4 4 No CPTWNEGO System limits applied to buffer
or Queue sizes.

17 11 No CPTEVRSN Control block version number
not supported.

18 12 No CPTECONN Required Parameter not passed.
For example, host, port, …

20 14 No CPTETOKN Specified data transfer token is
invalid.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

36 24 No CPTEDRAN TCP/IP environment is
terminating.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

Return Codes

4–8 PL/I Programmers Guide

Decimal Hex Diagnostic
Code

Variable Description

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination.
The diagnostic code is the
abnormal termination code that
is normally a CICS abend code,
but can also be in the “Abend
Codes” chapter of the Message
Guide.

255 FF No CPTEOTHR Other error.

Usage Notes

CONNECT Service 4–9

Usage Notes
The CONNECT service lets user-written application programs implement
TCP/IP client facilities. The CONNECT service’s generalized parameter list
(ACM) describes the application’s communications requirements and
information related to established connections. On completion, the ACM control
block contains fields initialized by both a user application and by the results of
the call to the CONNECT service.

There are required and optional fields initialized by a user or calling application.
The calling program must identify the server. You specify the server by selecting
the remote IP address field name ACMRADDR (or DNS name ACMRNAME)
with the remote port ACMRPORT. The remote port selection defines the server’s
well-known port address. Optional fields control data transfer buffering,
statistics, and subtask initialization.

When the CONNECT service completes, the ACM control block contains
information related to the established connection. A token ACMTOKEN
identifying the connection is returned in the ACM, and must be used in all
subsequent requests that refer to the connection. The user application program
should make no assumptions regarding the format of a token, other than that it is
an unsigned, full word value.

WARNING! Manipulating the token in any way can cause unpredictable results.

Information related to the negotiated buffer values, host names, host addresses,
and transport provider addresses are returned in the ACM.

The version number ACMVERS indicates the CPT release level in which this user
application program is written. This required field must be set to a binary
two(ACMVERSN) and is validated by the CONNECT service before processing
the request.

The function code ACMFUNC indicates the CPT callable service ID. The field is
initialized by the CONNECT service stub program and has little value to the
application except for dump analysis. The function code can identify and map an
argument with the error or trace logs, and dump analysis.

The remote IP address ACMRADDR or remote host name ACMRNAME is
required. These fields identify the host to which the CONNECT service initiates a
connection request. The IP address has precedence over host name. This implies
that the host name field is only used if an IP address is not specified. Specifying a
remote host name in ACMRNAME makes the code more flexible. Since the host
IP address could change and the program would not need to be modified.
However, extra overhead is required to resolve a host name to an IP address
with a DNR call.

Usage Notes

4–10 PL/I Programmers Guide

The remote port number ACMRPORT is a required field. This field identifies the
well-known port to which the CONNECT service initiates a connection request.

It is recommended that programmers set the ACMOPTN1_NODNR field to
prevent the extra overhead of making DNR calls to resolve the remote IP address
whenever possible.

User application programs have the ability to control Unicenter SOLVE:CPT and
transport provider data transfer buffering. ACMMSEND and ACMMRECV
specify the size of buffers allocated. The SEND and RECEIVE buffers are
allocated on initial entry into either the SEND or RECEIVE service. The
corresponding values used by the SEND and RECEIVE services are independent
of each other. The product of the queue and buffer values cannot exceed 32 KB.
CPT requires some additional storage to manage these buffers. This extra storage
is not included in the allocation.

The SEND service uses the ACMMSEND value. The RECEIVE service uses the
ACMMRECV value. These values indicate the maximum number of user data
bytes that can be transferred by the application in a single SEND or RECEIVE
request to the transport provider. The user application is not limited to these
values within the data transfer services. However, it is important to note that
multiple transport provider or API requests are issued to complete the caller’s
request. Information on queue and buffer size can be found in the SEND and
RECEIVE service description section in this chapter.

Initially, the tuning of data transfer storage may not be a concern. However, the
ability to control storage allocation can prove beneficial to the application or
CICS region. Consider enabling the statistics option to gather CPT statistical
information, which can be used to set the SEND or RECEIVE buffer size values.

The CONNECT service can modify data transfer buffer allocation values.
These values are negotiated with the transport provider and, depending on the
site configuration, can be reduced. Any application dependent on these values
should check them on return. These values are not typically modified when
giving reasonable numbers. However, it is advisable to check with the site
administrator for maximum values for the API transport services.

A number of arguments are not set by the calling application, but are returned to
the caller. These values represent information related to the client connection and
can be used by the application. The local port, host name, and IP address are
returned, as well as the client’s corresponding values.

Complete Parameter List

CONNECT Service 4–11

Complete Parameter List
ACMBCKLG Maximum size of the LISTEN backlog queue. Not used by the CONNECT

service.

ACMCDTBL Not used by the CONNECT service.

ACMCLNTL Not used by the CONNECT service.

ACMDGNCD Indicates the diagnostic code received by the CONNECT service for a transport
provider request. The ACMDGNCD depends on the error event recorded in the
ACMRTNCD field. The ACMDGNCD could be CICS abend code, ERRNO, or
other value depending on the ACMRTNCD failure.

When a Unicenter SOLVE:CPT API call fails, the product prefers to return the
ACMRTNCD and ACMDGNCD pair from the first error event that occurred
during the Unicenter Solve:CPT API call.

An API system Error return code (ERRNO) can be mapped back into a Unicenter
SOLVE:CPT return code (ACMRTNCD) when an EZASOKET (or EZACICAL)
error occurs during processing of a Unicenter SOLVE:CPT API call. If the first
error on a Unicenter SOLVE:CPT API call is an EZASOKET (or EZACICAL)
error, then the ACMDGNCD contains the TCP API system Error return code
(ERRNO). To determine the meaning of the ERRNO number, see IBM’s
Communication Server IP API Guide or IBM’s Communication Server IP CICS Sockets
Guide or equivalent.

ACMFUNC Indicates the function or callable service ID requested by the application
program. This field should not be set by the application, but rather is initialized
by the TRUE interface stub program.

Default: None, generated by service stub.

ACMLADDR Local IP host address. Indicates the local host internet address. The local host
internet address is updated when a server connection is established, and is
returned to the caller.

This field is an unsigned four-byte integer value.

Default: None.

ACMLNAME Local IP host name. Indicates the local host internet name. The local host internet
name is updated when a client connection is established, and is returned to the
caller.

This field is a 255-byte character string that is padded with blanks.

Default: None.

Complete Parameter List

4–12 PL/I Programmers Guide

ACMLPORT Client application port. The value returned in this field represents the TCP port
on the local host that was assigned to the client application by TCP, if it is not
specified by the caller of the CONNECT service. It is a standard practice to not
specify a value for this parameter on the CONNECT service call. Not specifying a
value allows the transport provider to assign this local port for you. If the caller
of the CONNECT service does specify a local port, the call could fail if the port is
already used by TCP.

This field is an unsigned positive integer with a maximum value of 65,534.

Default: None.

ACMMRECV API receive buffer size. Specifies the maximum number of user data bytes that
can be transferred by the application, in a single RECEIVE request to the
transport provider (API).

This value lets applications control input processing and can affect throughput
rates. The value is negotiated with and can be modified by the transport
provider.

Total allocation cannot exceed 32 KB.

Default: 1024.

ACMMROAS Not used by the CONNECT service.

ACMMROEP Not used by the CONNECT service.

ACMMSEND API send buffer size. Specifies the maximum number of user data bytes that can
be transferred by the application in a single SEND request to the transport
provider (API).

This value lets applications control output processing and can affect throughput
rates. The value is negotiated with and can be modified by the transport
provider.

Total allocation cannot exceed 32 KB.

Default: 1024.

ACMMSOCK Maximum sockets per allowed for your transaction

This field overrides the MSOCK= value from the T09MCICS configuration
macro.

Default: 50.

Complete Parameter List

CONNECT Service 4–13

ACMOPTN1 Byte 1 of the TCP connection initialization options.

ACMOPTN1_CTRAN Not used by the CONNECT service.

ACMOPTN1_LTRAN Client-Data Listener option. This option is for the
LISTEN service and is not validated or modified by the
CONNECT service.

ACMOPTN1_NODNR DNR Suppression option. Skip internal DNR calls to
resolve the requested DNS host name into a remote IP
address in the ACMRADDR field.

 Default: DNR is used for host name resolution.

ACMOPTN1_OTRAN Not used by the CONNECT service.

ACMOPTN1_SYNC Listen Syncport option. This option is for the LISTEN
service and is not validated or modified by the CONNECT
service.

Default: None.

ACMOPTN2 Byte 2 of the TCP connection initialization options.

ACMOPTN2_CLEN Not used by the CONNECT service.

ACMOPTN2_MRO Not used by the CONNECT service.

ACMOPTN2_SCTY Not used by the CONNECT service.

ACMOPTN2_USRID Not used by the CONNECT service.

ACMOPTN2_OP2SC Specifies whether a comma can be part of the first data
packet passed to the CSKL replacement listener. It permits
one or more commas in the first data packet. Not used by
the CONNECT service.

Default: None.

ACMOPTN3 Specifies TCP connection initialization options.

ACMOPTN3_NOT Specifies that the session will not participate in the STEAR
GIVE and session inactivity timeouts.

Default: None.

Complete Parameter List

4–14 PL/I Programmers Guide

ACMQRECV API receive queue size. You should only specify one. Adding extra buffers
wastes storage and does not improve performance.

Default: One.

ACMQSEND API send queue size. You should only specify one. Adding extra buffers wastes
storage and does not improve performance.

Default: One.

ACMRADDR Remote IP host address. Indicates the remote host internet address.

Either this field or the remote host name (ACMRNAME) field must be specified.

The remote host internet address is updated when a server connection is
established, and is returned to the caller.

This field is an unsigned four-byte integer value.

Default: None.

ACMRNAME Remote IP host name.

This field indicates the remote host internet name.

Either this value or the remote IP address (ACMRADDR) field must be specified.

This is a 255-byte character string that is padded with blanks. It can also be used
to resolve a dotted decimal name such as “123.234.123.234.” The remote host
internet name is updated when a server connection is established, and is
returned to the caller.

Default: None.

ACMRPORT Required. Remote well-known service port. This value represents the TCP port
on the remote host to which the client application is trying to connect.

This field is an unsigned positive integer with a maximum value of 65,534.

Default: None.

ACMRTNCD Indicates the return code set by the CONNECT service. This value is also
returned in register 15 and indicates the success or failure of the service. For
expected values, see Return Codes. See the ACMDGNCD parameter above.

ACMSECLM Not used by the CONNECT service.

Complete Parameter List

CONNECT Service 4–15

ACMSRVCE This field remains only for downward compatibility purposes and is ignored.
This field is no longer supported in version 6 of CPT.

ACMSTATS Specifies statistics logging options for the application program. The facility can
be used for debugging and tuning during development.

ACMSTATS_CONN Specifies that messages be generated on establishing either
a listen service or a data transfer connection. These
messages are generated by the LISTEN and CONNECT
services.

ACMSTATS_TERM Specifies that messages be generated on terminating an
established connection. These messages are generated by
the CONNECT service.

Default: No statistics logging.

ACMTIMEO Optional. This field is used by the CONNECT service to specify the amount of
time in seconds to wait for a TCP connection to complete.

Default: 30.

ACMTLSTN Listen service token. This field is not used by the CONNECT service. The value
in this field is not validated nor is it modified.

ACMTOKEN Specifies the token created and returned by the CONNECT service. This token is
used for all subsequent service calls for the client connection. Applications
should initialize this field to zero.

ACMTRACE Note that the tracing functionality has moved in version 6 of Unicenter
SOLVE:CPT. A greatly enhanced tracing capability is now available via the
TCPEEP tracing command. These tracing fields remain only for downward
compatibility purposes and are ignored. See the Administrator Guide for more
detail.

ACMTRAC1_NTRY ACMTRAC1_TERM ACMTRAC2_TPL

ACMTRAC1_ARGS ACMTRAC1_PASS ACMTRAC2_RLSE

ACMTRAC1_RECV ACMTRAC1_CLSE ACMTRAC2_STOR

ACMTRAC1_SEND ACMTRAC1_TERR ACMTRAC2_CLTD

ACMTRNID Listen start transaction ID. This field is not used by the CONNECT service. The
value in this field is not validated nor is it modified.

Default: None.

Complete Parameter List

4–16 PL/I Programmers Guide

ACMUCNTX One word of user context. Specifies one arbitrary word of user context to
associate with the connection. The information provided is not interpreted by
Unicenter SOLVE:CPT, and is saved with other connection information.

Default: Zero, no user context.

ACMUSRID Not used by the CONNECT service.

ACMVERS Required. Indicates the version number of the Unicenter SOLVE:CPT argument
used by the calling program.

Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

FTP Client Service 5–1

Chapter

5 FTP Client Service

Allows the transfer of files from CICS to remote systems using the Internet
standard File Transfer Protocol (FTP). These files are either CICS Transient Data
Queues or CICS Temporary Storage.

This chapter includes these sections:

■ Call Syntax—Sample syntax for the FTP Client Service call

■ Recommended AFT Parameters—Lists the parameters normally used and
recommended for the FTP Client Service call

■ Usage Example—Provides a sample shell of a program using the FTP Client
Service call

■ Parameter Values Returned in the AFT—Lists the fields that are updated in
the AFT control block upon return from the FTP Client Service call

■ PL/I Structures—Provides a list and information about the distributed
sample PL/I structures that are used by the FTP Client Service call

■ Sample Programs—Lists and describes the distributed sample PL/I
programs that use the FTP Client Service call along with other service calls

■ Completion Information—Describes the expected results at completion of the
FTP Client Service call

■ Return Codes—Lists the return codes that can apply to the FTP Client
Service call

■ Module Descriptions —General descriptions of the SOLVE:CPT FTP Client
Service modules.

■ Usage Notes— Miscellaneous notes on usage of the FTP client.

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the FTP Client Service call

Call Syntax

5–2 PL/I Programmers Guide

Call Syntax
EXEC CICS LINK
 PROGRAM ('T09TCFCM')
 COMMAREA (CPT_AFT)
 LENGTH (STG(CPT_AFT));

Recommended AFT Parameters
The following list contains the recommended parameters to use with the FTP
Client Service. These parameters are set within the AFT control block; see PL/I
Structures for sample information.

For a complete list and detailed description of optional parameters, see the
Complete Parameter List.

Parameter Description

AFTFNAMA Address of remote file name.

AFTFNAML Length of remote file name.

AFTFTPTL Length of FTP reply.

AFTFUNC File transfer type:
AFTFUNC_APPE for appending to a file.
AFTFUNC_RENM for renaming a file.
AFTFUNC_RETR to retrieve a file.
AFTFUNC_STOR for storing a file.
AFTFUNC_STOU for storing a unique file name.

AFTNBRX Number of files to transfer.

AFTPASS Password for remote logon.

AFTQNAME Queue name.

AFTQTYPE Queue type:
AFTQTYPE_TD for transient data queue.
AFTQTYPE_TS for temporary storage queue.

AFTRNAMA Address of remote host name.

AFTRNAML Length of remote host name.

AFTRTNTA Address of return text.

AFTRTNTL Length of return text.

AFTFTPTA Address of FTP reply.

Usage Example

FTP Client Service 5–3

Parameter Description

AFTTYPE Transfer Type:
AFTTYPE_ASCII for ASCII translation.
AFTTYPE_EBCDC for EBCDIC translation.
AFTTYPE_IMAGE for binary (no translation).
AFTTYPE_LOCAL for local translation.

AFTUSER User ID for remote logon.

AFTVERS Version number set to AFTVERS_VERSN (binary 2).

Usage Example
A sample program, T09PPFTP, is provided in the T09SAMP library. The
following is based on that sample.

This example contains the minimum amount of information that must be passed
to the FTP Client Service for it to function.

The required fields are:

■ Remote host name and length, or IP address. If the host name is used, it must
be resolvable by your DNR pointed to by Unicenter SOLVE:CPT

■ Valid user ID and password on the remote system

■ Name and length of the file to be acted upon

■ Name and type of queue for data retrieval—required for all functions except
rename

■ FTP and Unicenter SOLVE:CPT returned text fields and field length

All other fields can be left at the FTP defaults on the system to which the data is
being transferred.

Important! All fields must be specified in the format and case that the remote system
requires. The FTP Client Service does no checking before attempting the remote host
connection.

DCL 1 CPT_AFT,
%INCLUDE T09KPAFT;
DCL TS_QNAME CHAR (8) INIT ('SAMPLFTP');
DCL FILEDATA CHAR (43)
 INIT ('CPT FTP PL/I CALLABLE CLIENT SERVICE SAMPLE');
DCL DATALENG FIXED BIN (15) INIT (STG(FILEDATA));
DCL (IPTPTR POINTER,
 IPTLENG FIXED BIN (15),
 IPTAREA (99) CHAR (1) BASED (IPTPTR),
 TERMMSG CHAR (99) BASED (IPTPTR));

Usage Example

5–4 PL/I Programmers Guide

DCL (HOSTNAME CHAR (128) INIT ('host'),
 HOSTNAMEL FIXED BIN (15) INIT (4),
 USERID CHAR (64) INIT ('anonymous'),
 PASSWORD CHAR (3) INIT ('ftp'),
 DIRECTORY CHAR (19) INIT ('/home/host/incoming'),
 FILENAME CHAR (8) INIT ('ftp.file'));
DCL 1 RETURN_TEXTS,
 3 FTP_RETURN_TEXT CHAR (80) INIT (' '),
 3 CPT_RETURN_TEXT CHAR (80) INIT (' ');

/* T09PPFTP - MAINLINE EXECUTION */

/*---*/
/* BUILD REQUIRED AFT FIELDS */
/*---*/

AFTRNAMA = ADDR(HOSTNAME); /* SERVER LOGON PARMS */
AFTRNAML = HOSTNAMEL;
AFTUSER = USERID;
AFTPASS = PASSWORD;
AFTWDIRA = ADDR(DIRECTORY); /* UPLOAD FILE TO */
AFTWDIRL = STG(DIRECTORY);
AFTFNAMA = ADDR(FILENAME);
AFTFNAML = STG(FILENAME);
AFTNBRX = 1; /* STORE 1 FILE */
AFTFUNC = AFTFUNC_STOR;
AFTQTYPE = AFTQTYPE_TS; /* INPUT DATA QUEUE */
AFTQNAME = TS_QNAME;
AFTQITEM = 1;
AFTRTNTA = ADDR(CPT_RETURN_TEXT); /* RETURN FILEDATA */
AFTRTNTL = STG(CPT_RETURN_TEXT);
AFTFTPTA = ADDR(FTP_RETURN_TEXT); /* BUFFERS */
AFTFTPTL = STG(FTP_RETURN_TEXT);

/*---*/
/* LINK TO THE SERVICE MODULE */
/*---*/

EXEC CICS LINK
 PROGRAM ('T09TCFCM')
 COMMAREA (CPT_AFT)
 LENGTH (STG(CPT_AFT));

EXEC CICS RETURN;
END;

PL/I Structures

FTP Client Service 5–5

Parameter Values Returned in the AFT

After the FTP client call returns control to your application program, the
following fields are propagated with valid completion FTP client information.
These updated values are passed back to the application in the AFT control
block.

Field Name Description

AFTDGNCD Diagnostic code.

AFTFTPTL Actual length of FTP reply.

AFTNBRXT Number of files transferred.

AFTRTNCD Return code.

AFTRTNTL Actual length of returned text.

AFTFTPCD FTP return code.

PL/I Structures
Sample PL/I structures are provided in the distributed software and are
available to you in cpthlq.T09MAC.

Variable field names used in the samples and examples in this guide refer to
these structures.

T09KPAFT PL/I structure name for the AFT. For detailed information
and a sample copy of this structure, see AFT Control Block
Used by FTP Client Call in the “Control Block Layouts”
appendix.

All PL/I constants that apply to FTP calls are imbedded in the AFT structure
sample.

Sample Programs

5–6 PL/I Programmers Guide

Sample Programs
Sample PL/I source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PPFTP FTP Client Application.

Completion Information
Completion of a request to the Unicenter SOLVE:CPT FTP Client Service
depends on the specified FTP function. For all functions, a control connection is
established to the remote host and Telnet logon once this connection is
completed. Any specified transfer attributes are also sent to the remote host.
Further processing varies depending on the type of FTP function specified.

For functions that cause a file to be transferred (STOR, STOU, and APPE), a data
connection is established to the remote host, and the specified file is transferred
using the appropriate FTP service command. For remote file management
functions (RENM), no data connection is established. The FTP rename service
commands are sent through the control connection. The caller’s argument list
(AFT) is updated to show return codes as described in Return Codes.

On completion of the requested services, control is returned to the invoking user
application, with return codes and text indicating the success or failure of the
service execution.

Return Codes

FTP Client Service 5–7

Return Codes
The Unicenter SOLVE:CPT FTP Client Service returns status information in
return codes and text fields indicating the results of the execution. This
information is returned to the invoking user application in five fields of the AFT
(COMMAREA). Primary service level status information is returned in
AFTFTPCD. This return code indicates overall success or failure of the Unicenter
SOLVE:CPT FTP Client Service.

This table describes the SOLVE:CPT FTP Client Service return codes:

Return Description

0 The service has successfully executed. The specified file has been
transferred to the remote host.

4 A noncritical error was detected in one or more of the parms passed in
the AFT. No file transfer was attempted.

8 The remote FTP server returned a reply indicating that an error
occurred in the file transmission. The file was not successfully
transferred.

12 An error was detected in a SOLVE:CPT service routine that
necessitates aborting any file transfer in progress.

16 A critical system error has occurred. File transfer is either not
attempted or is aborted if already in progress.

AFTRTNTX of the AFT A text description of the execution results is also returned in AFTRTNTX of the
AFT. This text is formatted for display by the invoking user application, and
provides a description of the processing status.

See the appropriate TCP/IP FTP Message Guide for a detailed explanation of
error messages returned in this field.

AFTFTPTX of the AFT An additional text description of FTP replies is returned in AFTFTPTX of the
AFT. This text is formatted for display by the invoking user application and
provides the last reply from the FTP remote server. This field indicates the
results of the last FTP service command.

See the Internet standard Request For Comment (RFC) 959 for a further
explanation of FTP replies.

Return Codes

5–8 PL/I Programmers Guide

Any of the Unicenter SOLVE:CPT services invoked by Unicenter SOLVE:CPT
FTP Client Service return a return code and optional diagnostic code indicating
the success or failure of the service call. Detected Unicenter SOLVE:CPT errors
are returned to your application in AFT fields AFTRTNCD and AFTDGNCD.
The diagnostic code is optional and indicates the transport provider return code.
See the Return Codes Cross Reference Table.

The following is a list of return codes that can apply to the FTP Client call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

18 12 Yes CPTECONN Required Parameter not passed.
For example, host, port, …

19 13 No CPTEPROT Specified protocol not
supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

21 15 No CPTEBUFF Buffer address or length invalid.

22 16 No CPTECHAR Translate character set is invalid.

23 17 No CPTEMODE Translate mode specification is
invalid.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

143 8F Yes CPTEPROC Procedural error.

Module Descriptions

FTP Client Service 5–9

Decimal Hex Diagnostic
Code

Variable Description

254 FE Is abend
code

CPTABEND Abnormal termination. Note that
the diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

Module Descriptions
This section contains a general description of the Unicenter SOLVE:CPT FTP
Client Service modules.

■ T09TCFCM

■ T09TCCFDM

■ T09TCFRM

T09TCFCM

This module is the main entry point for requesting Unicenter SOLVE:CPT FTP
services. This module is invoked by your application using an EXEC CICS LINK.

Its primary functions are to:

■ Accept and validate parameters passed from your application

■ Open a control connection to the remote FTP server

■ Process access control parameters (USER, PASS, ACCT)

■ Process data transfer parameters for each file to be transferred (PORT, TYPE,
STRU, MODE, ALLO, SITE, MKD, CWD)

■ Open a data connection port to the remote FTP server for each file to be
transferred

■ Initiate file transfer for each file to be transferred

■ Close control connection to remote FTP server and return to your application

Module Descriptions

5–10 PL/I Programmers Guide

T09TCFDM

This module is a major subroutine of SOLVE:CPT FTP Client Service that is
invoked by an EXEC CICS START issued by T09TCFCM. This subroutine
performs the following two primary functions, depending on a function flag set
in the invoking routine:

■ LISTEN for and accept the data connection from the remote FTP server

■ Format and SEND the file to the remote FTP server over the established data
connection

T09TCFRM

This module is a major subroutine of SOLVE:CPT FTP Client Service that is
invoked by an EXEC CICS START issued by T09TCFCM. This subroutine
monitors the control connection and RECEIVEs any replies from the remote FTP
server.

Usage Notes

FTP Client Service 5–11

Usage Notes
CICS programs call FTP Client Service, passing necessary information for the
service to accomplish data transmission to a remote FTP server, then return
status information. FTP Client Service processes the parameters, negotiates logon
and file characteristics, storage and processing attributes, and transmits the
specified data to the remote server using standard FTP protocols. Once the
transmission occurs, FTP Client Service returns a return code or error text
describing the transmission status to the invoking program.

Your application invokes FTP Client Service using an EXEC CICS LINK to the
service. Information is exchanged between your application and FTP Client
Service through the CICS COMMAREA. To use this service, your application
first creates either temporary storage or a transient data file storage queue on the
local host for each file that will be transferred to the remote host. The
COMMAREA is used to identify the remote host, user access parameters and, for
each file to be transferred, the source location, destination names, transfer
parameters and storage function. On return from the FTP Client Service, your
application is responsible for queue maintenance and, if indicated by the FTP
Client Service return codes, retrying any failed transmissions.

This service calls a variety of existing Unicenter SOLVE:CPT TRUE exits to
satisfy the file transmission requirements as follows:

T09CCONN Establishes a connection to the specified remote host.

T09CCLOS Closes the specified connection to the remote host.

T09CSEND Sends data to the remote host via the specified connection.

T09CRECV Receives data from the remote host via the specified connection.

T09CGIVE Hands off a connection endpoint to another task.

T09CTAKE Accepts a connection endpoint from another task.

 T09CXLAT Translates data into the appropriate format for transmission or
storage.

T09CLFTP Listens for and accepts a data connection from the remote host.

For each of these called services, the buffering requirements that are normally
tunable by the calling user application are internally tuned by the Unicenter
SOLVE:CPT FTP Client Service to default values that are appropriate for FTP file
transfers.

Complete Parameter List

5–12 PL/I Programmers Guide

Complete Parameter List
For a recommended list of parameters, see Recommended AFT Parameters.

AFTACCT Optional. Account for remote logon. Indicates the account that Unicenter
SOLVE:CPT FTP Client Service uses when performing a Telnet logon to the
remote host.

Your application is responsible for ensuring that the account number is specified
for remote hosts with this type of file access requirement.

Default: None.

AFTALLO Storage allocation on remote host. Indicates the number of bytes of storage on the
remote host to be allocated for the transferred file.

Note: This feature is not currently supported and the field should contain spaces
or binary zeros.

Default: Zero.

AFTDGNCD Diagnostic code. Indicates the diagnostic code associated with a non-zero
Unicenter SOLVE:CPT return code. This value generally indicates a transport
provide return code.

Default: Zero.

AFTFNAMA Address of remote file name. Indicates the storage address where the required
remote file name is placed.

This is a contiguous segment of storage accessible to the user task. The storage
area can be aligned on any boundary convenient to the application program. This
field is a character string of up to 255 bytes. This name can be the last node of the
full directory name or the fully qualified data set name or pathname.

When used with STOR or APPE, this field contains the name under which the
transferred file will be stored/appended. When used with RENM, this field
contains the name of the Rename From file on the remote host.

Default: None.

AFTFNAML Length of remote file name. Indicates the length in bytes of the remote file name
in the storage area defined by AFTNAMA.

This value must be specified if AFTNAMA is specified.

Default: Zero.

Complete Parameter List

FTP Client Service 5–13

AFTFORM Transmission format.

AFTFORM_ASACC Use ASA carriage control transmission format (FUTURE).

AFTFORM_DFLT Use the FTP service default format.

AFTFORM_NPRNT Use nn-print transmission format.

AFTFORM_TELNET Use Telnet transmission format (FUTURE).

Default: None (use the FTP service default. Refer to the appropriate FTP manual
for more details).

AFTFTPCD FTP return code. Contains a return code set by the Unicenter SOLVE:CPT FTP
Client Service indicating the success or failure of the service request.

Default: Zero.

AFTFTPTA Address of FTP reply. Indicates the storage address where the final FTP reply
text is placed.

This is a contiguous segment of storage accessible to the user task. Unicenter
SOLVE:CPT FTP Client Service returns one line of text supplied by FTP,
indicating the success or failure of the file transfer.

Allow a minimum of 80 bytes or the text may be truncated.

Default: None.

AFTFTPTL Length of FTP reply. Indicates the length in bytes of the FTP reply area available
in the storage defined by AFTFTPTA.

Default: Zero.

Complete Parameter List

5–14 PL/I Programmers Guide

AFTFUNC Required. FTP service command. Indicates the four-byte character field FTP
service command that should be used for transferring this file.

AFTFUNC_APPE Append the file to the file name specified in AFTFNAMA.
If the file does not exist, create it.

AFTFUNC_RENM Rename the file specified in AFTFNAMA to the name
specified in AFTRNTOA.

AFTFUNC_STOR Store the file under the name specified in AFTFNAMA. If
the file exists, replace it.

AFTFUNC_STOU Store the file under a unique name as specified in
AFTFNAMA in the default or specified working directory.
If a file with that name exists, the FTP server reports the
unique name assigned to it.

Default: None.

AFTMODE Transmission mode. Indicates the FTP transmission mode to be used for transfer
of this file.

AFTMODE_BLCK Use Blocked mode (FUTURE).

AFTMODE_COMP Use Compressed mode (FUTURE).

AFTMODE_DFLT Use the FTP service default mode.

AFTMODE_STRM Use Stream mode.

Default: None. Use the FTP service default. Refer to the appropriate FTP manual
for more details.

AFTNBRX Number of files to transfer. Indicates the number of files to be transferred for this
invocation of Unicenter SOLVE:CPT FTP Client Service.

The number of files transferred for a single call is limited to one and the field is
not referenced.

Default: Zero.

AFTNBRXT Number of files transferred. Indicates the number of files that have been
transferred successfully to the remote host.

The number of files transferred for a single call is limited to one and the field is
not used.

Default: Zero.

Complete Parameter List

FTP Client Service 5–15

AFTPASS Required. Password for remote logon. Indicates the password that Unicenter
SOLVE:CPT FTP Client Service uses when performing a Telnet logon to the
remote host.

Default: None.

AFTQITEM Number of Temporary Storage items. Indicates the number of items stored in the
storage queue specified in AFTQNAME.

This field is not currently used. All records in the named queue are processed.

Default: Zero.

AFTQNAME Required. Queue name. Indicates the name of the storage queue that contains the
file to be transferred to the remote host.

■ If AFTQTYPE is Transient Data (AFTQTD), this field must contain a four-
byte queue name for which there is an existing DCT entry.

■ For Temporary Storage (AFTQTS), this field can contain up to eight
characters that identify a TS queue that exists.

Default: None.

AFTQTYPE Required. Queue type. Indicates the type of storage queue used for the file to be
transferred.

AFTQTYPE_TD Stored on a Transient Data queue.

AFTQTYPE_TS Stored on a Temporary Storage queue.

Default: None.

AFTRNAMA Address of remote host name. Indicates the storage address where the name of
the remote host is placed. This is a contiguous segment of storage accessible to
the user task. The storage area can be aligned on any boundary convenient to the
application program.

Either this value and its associated length (AFTRNAML) or the remote IP
address (AFTRADDR) must be specified.

The remote host name is a character string of up to 255 bytes.

Default: None.

Complete Parameter List

5–16 PL/I Programmers Guide

AFTRNAML Length of remote host name. Indicates the length in bytes of the remote host
name in the storage area defined by AFTRNAMA.

When AFTRNAMA has been set then the AFTRNAML field should be between 1
and 255. The AFTRNAML field contains an unsigned four byte integer.

Default: Zero.

AFTRNTOA Address of Rename To file name. Indicates the storage address where the name
of the Rename To file is placed.

This is a contiguous segment of storage accessible to the user task. The storage
area can be aligned on any boundary convenient to the application program.

This field contains a character string of up to 255 bytes representing the new
name for an existing file identified in AFTNAMA. The Rename To file can be a
fully qualified data set name, a full path name, or the last node of the new file
name.

Default: None.

AFTRNTOL Length of Rename To file name.

Indicates the length in bytes of the Rename To file name in the storage area
defined by AFTRNTOA.

This value must be specified if AFTRNTOA is specified.

Default: Zero.

AFTRTNCD Return code. Indicates the return code set by Unicenter SOLVE:CPT services
called during the Unicenter SOLVE:CPT FTP Client Service file transfer process.

Default: Zero.

AFTRTNTA Address of return text. Indicates the storage address where text describing the
Unicenter SOLVE:CPT return code is placed.

This is a contiguous segment of storage accessible to the user task. Unicenter
SOLVE:CPT FTP Client Service returns one line of text, indicating the success or
failure of the file transfer process.

Allow at least 80 bytes or the text may be truncated.

Default: None.

Complete Parameter List

FTP Client Service 5–17

AFTRTNTL Length of return text. Indicates the length in bytes of the Unicenter SOLVE:CPT
return text area available in the storage defined by AFTRTNTA.

Default: Zero.

AFTSITEA Address of site parameters. Indicates the storage address where optional FTP
SITE parameters are placed.

This is a contiguous segment of storage accessible to the user task. The storage
area can be aligned on any boundary convenient to the application program.
Your application is responsible for ensuring that any SITE parameters are
supported by, and consistent with, the requirements of the remote host FTP
server.

Default: None.

AFTSITEL Length of site parameters indicates the length in bytes of the FTP SITE
parameters in the storage area defined by AFTSITEA.

This value must be specified if AFTSITEA is specified.

Default: Zero.

AFTSTRU Transmission structure. Indicates the FTP transmission structure to be used for
transfer of this file.

AFTSTRU_FILE Use File transmission structure.

AFTSTRU_PAGE Use Page transmission structure (FUTURE).

AFTSTRU_RECRD Use Record transmission structure.

AFTSTRU_DFLT Use the FTP service default structure.

Default: None. Use the FTP service default. Refer to the appropriate FTP manual
for more details.

AFTRACE Please note that the tracing functionality has moved in Version 6 of Solve:CPT. A
greatly enhanced tracing capability is now available via the TCPEEP tracing
command. See the Administrator Guide for more detail. These tracing fields
remain only for downward compatibility purposes and are ignored.

AFTTRACE_LVL1 AFTTRACE_LVL2

Default: Zero (no trace logging).

Complete Parameter List

5–18 PL/I Programmers Guide

AFTRADDR Remote IP host address.

Indicates the remote host internet address.

Either this field or the remote host name (AFTRNAMA/AFTRNAML) must be
specified.

AFTRLIM Transmission timing. A halfword binary value that specifies the number of
retries to attempt before aborting the FTP connection.

AFTTLIM Transmission timing. A fullword binary value that specifies the maximum
amount of time, in seconds, to wait for data to be received from the remote host.
If no data is received in this amount of time, the receive is retried.

AFTTYPE Transmission type. Indicates the FTP transmission type to be used for transfer of
this file.

AFTTYPE_ASCII Use ASCII transmission type.AFTTDFLT. Use the FTP
service default type.

AFTTYPE_EBCDC Use Compressed mode (FUTURE).

AFTTYPE_IMAGE Use EBCDIC transmission type (FUTURE).

AFTTYPE_LOCAL Use LOCAL transmission type (FUTURE).

Default: None. Use the FTP service default. Refer to the appropriate FTP manual
for more details.

AFTUSER Required. User ID for remote logon. Indicates the user ID that Unicenter
SOLVE:CPT FTP Client Service uses when performing a Telnet logon to the
remote host.

Default: None.

AFTVERS Required. Version number. Indicates the version number of the FTP Client
Service argument used by the calling program.

Must be set to a binary two.

AFTVERSN_VERSN—Specifies version number two.

Default: None.

Complete Parameter List

FTP Client Service 5–19

AFTWDIRA Address of working directory name. Indicates the storage address where the
name of a working directory is placed.

This is a contiguous segment of storage accessible to the user task. The storage
area can be aligned on any boundary convenient to the application program.

This field contains a character string of up to 255 bytes representing the path
name of an existing directory on the remote host.

Unicenter SOLVE:CPT FTP Client Service generates a Change Working Directory
command, and creates the path if it does not exist.

Default: None.

AFTWDIRL Length of working directory name. Indicates the length in bytes of the working
directory in the storage area defined by AFTWDIRA.

Note: This value must be specified if AFTWDIRA is specified.

Default: Zero.

GIVE Service 6–1

Chapter

6 GIVE Service

This service releases ownership of a connection and associated internal Unicenter
SOLVE:CPT resources. You must use the GIVE service call to guarantee proper
passing of a connection to another transaction.

To invoke the GIVE service, a user application must first build an AFM and then
issue a call to the GIVE routine. On completion, a return code is set to indicate
the success or failure of the request.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the GIVE service call

■ Recommended AFM Parameters—Lists the parameters normally used and
recommended for the GIVE service call

■ Usage Example—Provides a sample program shell using the GIVE service
call

■ Parameter Values Returned in the AFM—Lists the fields that are updated in
the AFM control block on return from the GIVE service call

■ PL/I Structures—Lists information about the distributed PL/I structures
used by the GIVE service call

■ Sample Programs—Sample PL/I programs that use the GIVE service call

■ Completion Information—Describes the expected results at completion of the
GIVE service call

■ Return Codes—Lists the return codes that can apply to the GIVE service call

■ Usage Notes—Provides notes about GIVE service call usage and resource
cleanup.

■ Complete Parameter List—List all of the parameters and options of those
parameters for the GIVE service call

Call Syntax

6–2 PL/I Programmers Guide

Call Syntax

CALL T09FGIV (CPT_AFM);

Recommended AFM Parameters
The following table lists the recommended parameters for use with the GIVE
service. These parameters are set within the AFM control block. See Error!
Reference source not found. for sample information.

For a complete list of optional parameters, see the Complete Parameter List.

Parameter Description
AFMTOKEN Required session token specifies which session the current task

will relinquish control over.
AFMVERS Version number should be set to ACMVERSN (binary 2).

Usage Example
In this example, a subset of actual required statements is shown to emphasize the
use of a GIVE call. The AFMTOKEN token is loaded from the ACMTOKEN field
to be used by the GIVE service. The return code is checked to determine GIVE
service completion status.

Note: The statements needed for the GIVE service appear in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FLST,T09FGIV)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (CPTPRT,MSGPRT) POINTER;
DCL 1 CPT_ACM,
 %INCLUDE SYSLIB(T09KPACM);
DCL 1 CPT_AFM,
 %INCLUDE SYSLIB(T09KPAFM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL LISTENING BIT (1) INTI ('1'B);
%INCLUDE T09KPCON;
 DO WHILE (LISTENING);
 /*
 CPT LISTEN Connection Management service request
 */
 AFMTOKEN = ACMTOKEN;
 /*
 CPT GIVE Facility Management service request
 */
 CALL T09FGIV (CPT_AFM);
 IF AFMRTNCD ^= 0
 THEN DO;

Usage Example

GIVE Service 6–3

 /*
 Process and log GIVE error
 Terminate WHILE condition
 */
 END;
 /*
 START Data Processing Transaction
 */
 CICS START TRANSID(trans id) FROM(CPT_ACM) LENGTH(STG(CPT_ACM));
 END;
 /*
 CPT LISTEN Connection Release service request
 */
 /*
 Terminate transaction
 */
 EXEC CICS RETURN;

Parameter Values Returned in the AFM

6–4 PL/I Programmers Guide

Parameter Values Returned in the AFM
After the GIVE call returns control to your application program, the following
fields are propagated with information. These updated values are passed back to
the application in the AFM control block.

Parameters Description

AFMDGNCD Diagnostic code.

AFMRTNCD Return code.

PL/I Structures
Sample PL/I structures are provided in the distributed software and are
available to you in cpthlq.T09MAC. Variable field names contained in the
distributed samples and the examples in this guide refer to these structures.

T09KPAFM PL/I structure name for the AFM. For detailed information
and a sample copy of the PL/I structure, see AFM:
Argument for Facility Management Used by the GIVE and
TAKE Services section in appendix “Control Block
Layouts.”

Note: An excerpt of the PL/I constants that apply to AFM
calls immediately follows the AFM in the appendix.

T09KPCON The PL/I structire name for PL/I constants that apply to
the various service calls. For detailed information and a
sample copy of the PL/I copybook see T09KPCON: PL/I
Call Constants Copybook section of the appendix “Control
Block Layouts”

Sample Programs

GIVE Service 6–5

Sample Programs
Sample PL/I source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PPSV3 TCP Server 3 program is a multi-threaded server using a Listen API
call with an independent EXEC CICS START tran.

T09PPSV5 TCP Server 5 program is spawned by an inbound connection from
the T09MLSTN tool. It utilizes the Select tool to handle RECEIVE
calls when there is no available data.

Completion Information
The GIVE service completes normally when all resources associated with this
connection are processed.

On normal return to the application program, the general return code in register
15 (AFMRTNCD) is set to zero (CPTIRCOK). The diagnostic code in register zero
(AFMDGNCD) is always zero.

If the GIVE service completes abnormally, some resources associated with this
connection cannot be successfully transferred from one task to another.
The general return code (AFMRTNCD) in register 15 and the diagnostic code
(AFMDGNCD) in register zero indicate the nature of the failure.

Return Codes

6–6 PL/I Programmers Guide

Return Codes
The GIVE service returns codes indicating the results of the execution. These
values are in the AFMRTNCD (R15) and AFMDGNCD (R0).

Structure T09KPRCS contains equates and descriptions for the possible return
codes. T09KPRCS is available in the distributed software in cpthlq.T09MAC. See
the appendix “Return Codes” for a sample copy of the PT09KPRCS structure.

The following table lists the return codes that can apply to the GIVE call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

17 11 No CPTEVERN Control block version number
not supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

34 22 No CPTENAPI API not fully available; retry.

37 25 No CPTESLCT SELECT Tool transaction is not
running.

40 28 No CPTETERM TCPIP is terminating.

254 FE No CPTABEND Abnormal termination.

255 FF No CPTEOTHR Other error.

Usage Notes

GIVE Service 6–7

Usage Notes
The GIVE service releases ownership of a connection from a CICS task.
Disassociating resources from a task lets the Unicenter SOLVE:CPT properly
manage resources during task termination. This ability to GIVE and TAKE
ownership of connections offers you a range of programming options, while still
providing Unicenter SOLVE:CPT with resource management capabilities.

The GIVE service requires the application to set the AFM version number and
token fields. When a connection is established there are internal Unicenter
SOLVE:CPT resources associated with that connection. Unicenter SOLVE:CPT is
responsible for proper clean up of those resources on task or transaction
termination. These resources include storage allocated by Unicenter SOLVE:CPT,
the API, and the transport provider storage.

The GIVE is all about proper resource cleanup. For a Unicenter SOLVE:CPT
token (connection) to be properly passed to another transaction, it must first be
GIVEn to release ownership. The receiving transaction TAKEs the connection.

Important! If a transaction does not GIVE the token before it performs an EXEC CICS
RETURN then the CICS TRUE end of task exit will clean up all resources including
closing down the connections. Therefore, if you have not GIVEn your token the next
transaction, it cannot use the connection because it will be gone; already be closed; so a
TAKE will fail.

A server application is a good example of how the GIVE service benefits a user
application. A listening task issues the GIVE service and starts a new transaction
to handle data transfer. The data transfer transaction then TAKEs the connection.
This sequence would prevent a connection from being closed (implicitly by the
Unicenter SOLVE:CPT task termination exit) if the server application terminates.
However, if the data transfer transaction is terminated without issuing an
explicit close (Unicenter SOLVE:CPT CLOSE service) an implicit close is
scheduled, and resource management is handled by the Unicenter SOLVE:CPT
task termination exit.

The AFMVERS version number indicates the AFM control block release level in
which this user application program is written. This required field must be set to
ACMVERSN (binary 2) and is validated by the GIVE service before processing
the request.

The AFMFUNC function code indicates the Unicenter SOLVE:CPT callable
service ID. The field is not initialized by a user application program and has little
value to the application except for dump analysis. The function code can identify
and maps an argument list with the error or trace log and dump analysis.

The token AFMTOKEN indicates the connection and internal resources to be
processed by the GIVE service. This is a required field and is validated by the
GIVE service before processing request.

Complete Parameter List

6–8 PL/I Programmers Guide

Complete Parameter List
For a recommended list of parameters, see Recommended AFM Parameters.

AFMCOMMA Reserved for future use.

AFMCOMML Reserved for future use.

AFMDGNCD Diagnostic code. Indicates the diagnostic code received by the GIVE service for a
transport provider request.

AFMFUNC Function code. Indicates the function or callable service ID requested by the
application program.

This field is set by the application, but is initialized by the TRUE interface stub
program.

Default: None.

AFMMSOCK Unused Parameter.

AFMNTRAN Transaction ID.

AFMNTRAN contains the next transaction to be initiated by the Select tool when
the ECB is posted inside the SELECT indicating some kind of data activity on the
connection. To enable the use of this field, you must specify the AFMOPT-SEL
option.

Default: Current transaction ID.

AFMOPTNS Facility Management Options
AFMOPT_COM Reserved for future use.

AFMOPT_DEQ Reserved for future use.

AFMOPT_ENQ Reserved for future use.

AFMOPT_SEL Informs the GIVE service to pass this token to the SELECT Tool

Default: None.

AFMRTNCD Return code. Indicates the return code set by the GIVE service. This value is also
returned in register 15 and indicates the success or failure of the service.

 Default: None.

Complete Parameter List

GIVE Service 6–9

AFMTOKEN Required session token specifies which session that the current task will
relinquish control over.

AFMVERS Required version number. Indicates the Unicenter SOLVE:CPT version number
of the argument list used by the calling program.

Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

LISTEN Service 7–1

Chapter

7 LISTEN Service

Although every effort was made to make the LISTEN service API call as easy as
possible to use, it is always easier to use the Unicenter SOLVE:CPT Listen Tool
since it requires no coding on your part. Always check first to see if the Listen
Tool meets your needs before using the LISTEN service call. It is extremely rare
that the Listen tool will not meet your needs. For information on using the Listen
tool, see the “Configuration Reference” chapter of the Administrator Guide.

The LISTEN service call provides a server facility that is used by an application
program. It establishes a session with the local transport provider, passively
listens for connection requests. As new session requests come in, it accepts new
connections. When a connection with a client is established, the LISTEN service
either returns control to the calling program or starts a defined transaction.
Information related to the connection is updated and returned within the ACM.

To invoke the LISTEN service, a user application is required to first build an
ACM and then issue a call to the LISTEN routine. The minimum information
required by this service is the version number and the local transport provider
port. Optional information related to data transfer buffering, CPT statistics and
tracing, and subtask initialization can be specified. Completion of a LISTEN
service depends on options selected within the ACM.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the LISTEN service call

■ Recommended ACM Parameters—Lists the parameters normally used and
recommended for the LISTEN service call

■ Usage Examples—Provides sample shells of programs using the LISTEN
service call

■ Parameter Values Returned in the ACM—Lists fields that are updated in the
ACM control block on return from the LISTEN service call

■ PL/I Structures—Provides information about the distributed sample PL/I
structures that are used by the LISTEN service call

■ Sample Programs—Lists and describes the distributed sample PL/I
programs that use the LISTEN service call along with other service calls.

■ Completion Information—Describes the expected results at the completion of
the LISTEN service call

Call Syntax

7–2 PL/I Programmers Guide

■ Return Codes—Lists the return codes that can apply to the LISTEN service
call

■ Usage Notes—Provides miscellaneous notes about LISTEN service call usage

■ Network Considerations—Provides a list of consideration when using the
ACM, a common data structure, for both client and server connection
initialization

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the LISTEN service call

■ Client-Data Listener Option—Describes how to implement the Client-Data
Listener Option

Call Syntax
CALL T09FLST (CPT_ACM);

Recommended ACM Parameters
The following list contains the recommended parameters for use with the
LISTEN service. These parameters are set within the ACM control block. See
PL/I Structures for sample information.

For a complete list of optional parameters, see the Complete Parameter List.

Field Name Description

ACMLPORT Listen well-known service port.

ACMOPTN1 Set ACMOPTN1_NODNR to prevent the overhead of DNR calls
to resolve the accepted transactions IP addresses.

ACMTRNID Listen start transaction ID to start when a new connection is
received.

ACMVERS Version number should be set to ACMVERSN (binary 2).

Usage Examples

LISTEN Service 7–3

Usage Examples
Due to the relative flexibility of the LISTEN service call we provide a number of
examples of processes involved with the LISTEN service:

■ Recommended Server—This is the most common listener style and can be
utilized in most server environments.

■ Standard Multithreaded Server—A straightforward multithreaded server
passes each session to a daughter task.

■ Multithreaded Server—Special Start Transaction Needs—This listener style
should be used in cases where local work must occur between the LISTEN
and start of the daughter transaction to process the new session.

■ Single-Threaded Server—This is a rarely used server style, intentionally
limiting connections for performance reasons such as access to a critical
database

■ Client-Data Listener Option—This listener style is rather unique. Therefore,
we refer you to another section for further detailed information

■ Sample Daughter Task Taking Ownership of a Session—Sample of how a
daughter session takes control of a passed server session

Recommended Server

Computer Associates recommends that most sites configure the Unicenter
SOLVE:CPT Listen tool using the T09MLSTN statement in the T09CONxx
configuration file for each server they wish to run.

Here a server can listen on port 2345 and pass each connection to transaction
SRV3 by configuring the T09MLSTN statement in the T09CONxx configuration
file as follows:
T09MLSTN PORT=2345,TRANSID=SRV3

Note: This listener style makes for the most efficient server program. The server
application responds more quickly to new connection requests because it is not involved
in the task of data transfer or connection management after the initialization connection.

The ACM control block is passed to each new SRV3 session that can use the
EXEC CICS RETRIEVE command to access the ACM related session information
fields. To view an example, see the Sample Daughter Task Taking Ownership of
a Session.

Usage Examples

7–4 PL/I Programmers Guide

Standard Multithreaded Server

This sample simply loops listening for new connections initiating the transaction
specified by the ACMTRNID field to process the connection. This server style
does only one thing, listen, and hands off connections to the daughter transaction
as specified in the ACMTRNID field.

Note: This is accepted as the best design for a server.

This multithreaded server example listens for connections on local port 2345. The
server starts a new CICS task SRV3 to process each new daughter session.
Control is not returned to the calling application until a failure occurs. Generally,
this failure is due to termination of CICS, CPT, or the transport provider (API).
At the point of an error, the ACMRTNCD is checked to determine LISTEN
service request completion status.

Note: The statements relating to the LISTEN service appear in bold.

SAMP2: PROCEDURE OPTIONS (MAIN);
DCL T09FLST ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ACM,
 %INCLUDE SYSLIB(T09KPACM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
%INCLUDE T09KPCON;
 /*
 CPT LISTEN Connection Management service request
 */
 ACMLPORT = 2345;
 ACMTRNID = 'SRV3';
 ACMOPTN1 = ACMOPTN1_NODNR;
 CALL T09FLST (CPT_ACM);
 IF ACMRTNCD ^= 0
 THEN DO;
 /* Process and log LISTEN error */
 END;

 EXEC CICS RETURN;

Note: There is no need to write the above program for your server. The above
server can be replaced by configuring a T09MLSTN macro statement in the
T09CONxx configuration file as follows:
T09MLSTN PORT=2345,TRANSID=SRV3

The ACM control block is passed to each new SRV3 session that can use the
EXEC CICS RETRIEVE command to access the ACM related session information
fields. To view an example, see Sample Daughter Task Taking Ownership of a
Session.

Usage Examples

LISTEN Service 7–5

Multithreaded Server—Special Start Transaction Needs
If you do not specify the ACMTRNID field in the CPT-ACM LISTEN parameter
list, the call to listen returns control for every new connection. There are cases
where an application needs to perform some special work between the LISTEN
call and the start of the new daughter task.

This example is a multithreaded server application. The server listens on local
port 3456. When control is returned from the T09FLSTN call, it can perform any
special work. The token is loaded from the ACMTOKEN. The server then uses
the GIVE service to release ownership of the session. It starts the daughter
transaction to handle the session.

Note: The statements relating to the LISTEN service appear in bold.

SAMP2: PROCEDURE OPTIONS (MAIN);
DCL (T09FLST,T09FGIV)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ACM,
 %INCLUDE SYSLIB(T09KPACM);
DCL 1 CPT_AFM,
 %INCLUDE SYSLIB(T09KPAFM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL LISTENING BIT (1) INTI ('1'B);
%INCLUDE T09KPCON;
 DO WHILE (LISTENING);
 /*
 CPT LISTEN Connection Management service request
 */
 ACMLPORT = 3456;
 ACMOPTN1 = ACMOPTN1_NODNR;
 CALL T09FLST (CPT_ACM);
 IF ACMRTNCD ^= 0
 THEN DO;
 /*
 Process and log LISTEN error
 Terminate WHILE condition
 Leave the while loop
 */
 END;
 /*
 Do any special processing that is needed
 */
 AFMTOKEN = ACMTOKEN;
 /*
 START Data Processing Transaction
 */
 CICS START TRANSID(SRV3)
 FROM(CPT_ACM) LENGTH(STG(CPT_ACM));
 END; /* while loop */

 EXEC CICS RETURN;

Here the ACM control block is passed to each new SRV3 session. SRV3 can use
the EXEC CICS RETRIEVE command to access the CPT-ACM related session
information. To view an example, see Sample Daughter Task Taking Ownership
of a Session.

Usage Examples

7–6 PL/I Programmers Guide

Single-Threaded Server

This is a rarely used server style that intentionally limits connections to one-at-
a-time. This style can be used for performance reasons such as severely limiting
access to a critical database, to keep the database from consuming too many
resources.

Important! This sample program is generally not the preferred server model. This
single-threaded server model is only suitable for connections of very short time duration.

The problem is that after returning from the LISTEN service the application
blocks additional incoming connection requests. All other pending users must
wait for the current connection to finish completely before they can use the
service.

This example establishes a server connection, processes data, and closes the
connection, before finally going back to check for another connection and more
work. The server listens on well-known port 1234. The token is loaded from the
ACM and used by all of the following CPT service requests. The return code is
checked to determine LISTEN service completion status.

Note: The PL/I statements relating to the LISTEN service appear in bold. This
enables you to see which statements relate to the LISTEN service call.

SAMP2: PROCEDURE OPTIONS (MAIN);
DCL T09FLST ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ACM,
 %INCLUDE SYSLIB(T09KPACM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL LISTENING BIT (1) INTI ('1'B);
%INCLUDE T09KPCON;
 DO WHILE (LISTENING);
 /*
 CPT LISTEN Connection Management service request
 */
 ACMLPORT = 1234;
 ACMOPTN1 = ACMOPTN1_NODNR;
 CALL T09FLST (CPT_ACM);
 IF ACMRTNCD ^= 0
 THEN DO;
 /*
 Process and log LISTEN error
 Terminate WHILE condition
 Leave the while loop
 */
 END;
 /*
 Application and CPT data transfer (SEND/RECEIVE) processing
 */
 END; /* while loop */

 EXEC CICS RETURN;

Usage Examples

LISTEN Service 7–7

Sample Daughter Task Taking Ownership of a Session

A daughter task can take ownership of the session by using EXEC CICS
RETRIEVE to get a copy of the ACM control block. It receives ownership of the
task by issuing the TAKE command. Sample program T09PPSV2 is a sample
daughter task program that could have been started by a server to process a
session request.

Here is sample code to retrieve the CPT-ACM and take ownership of the session
represented by the ACMTOKEN field. It retrieves a copy of the CPT-ACM. It
copies the ACMTOKEN session ID into the AFMTOKEN. Ownership of the
session occurs after the T09FTAK (TAKE service) returns with a zero return code.

Note: The statements relating to taking ownership of the session appear in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL T09FTAK ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ACM,
 %INCLUDE SYSLIB(T09KPACM);
DCL 1 CPT_AFM,
 %INCLUDE SYSLIB(T09KPAFM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
%INCLUDE T09KPCON;
 /*
 Retrieve arguments
 */
 CICS RETRIEVE FROM(CPT_ACM) LENGTH(STG(CPT_ACM));
 AFMTOKEN = ACMTOKEN;
 /*
 CPT TAKE Facility Management service request
 */
 CALL T09FTAK (CPT_AFM);
 IF AFMRTNCD ^= 0
 THEN DO;
 /*
 Process and log TAKE error
 Terminate transaction
 */
 END;

 /*
 Application and CPT Data Transfer (SEND/RECV) service request
 */

 /*
 CPT Connection Release service request
 */

 EXEC CICS RETURN;

Parameter Values Returned in the ACM

7–8 PL/I Programmers Guide

Parameter Values Returned in the ACM
After the LISTEN call returns control to your application program, the following
fields are propagated with valid established connection information. These
updated values are passed back to the application in the ACM control block.

Field Name Description

ACMDGNCD Diagnostic Code.

ACMLADDR Local IP Host Address.

ACMLNAME Local IP Host Name.

ACMMRECV API receive buffer size.

ACMMSEND API send buffer size.

ACMQRECV API receive queue size, set to 1.

ACMQSEND API send queue size, set to 1.

ACMRADDR Remote IP Host Address.

ACMRPORT Client Application Port.

ACMTOKEN Token—Connection or endpoint.

ACMRTNCD Return Code.

PL/I Structures
Sample PL/I structures are provided and are available to you in the distributed
software in cpthlq.T09MAC. Variable field names contained in the distributed
samples and the examples in this guide refer to these structures.

T09KPACM The PL/I structure name for the ACM. For detailed
information and a sample copy of the PL/I structure, see
the ACM: Argument for Connection Management Used by
the CONNECT and LISTEN Services section in appendix
“Control Block Layouts.”

Note: An excerpt of the PL/I constants that apply to ACM
calls immediately follows the ACM in the appendix.

T09KPCON The PL/I structire name for PL/I constants that apply to
the various service calls. For detailed information and a
sample copy of the PL/I copybook see T09KPCON: PL/I
Call Constants Copybook section of the appendix “Control
Block Layouts”

Sample Programs

LISTEN Service 7–9

 Sample Programs
Sample PL/I source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PPSV1 TCP Server 1 program is a single-threaded server using a Listen
API call.

T09PPSV2 Sample daughter session code to process a new session passed
from a server.

T09PPSV3 TCP Server 3 program is multi-threaded server using a Listen API
call with an independent EXEC CICS START tran.

T09PPSV4 TCP Server 4 program is a multi-threaded server using a Listen
API call that has CPT internally issuing the EXEC CICS START
tran.

Completion Information

7–10 PL/I Programmers Guide

Completion Information
Completion of a request to the LISTEN service depends on the arguments passed
in the ACMTRNID field in the CPT-ACM parameter list.

Completion Information When the ACMTRNID Field Is Set in the CPT-ACM

When the LISTEN service is initiated with a transaction ID (ACMTRNID
contains a CICS transaction), it operates as a CICS long running task. The
LISTEN service establishes client connections and starts a data processing
transaction. The data processing transaction receives a copy of the connection
management argument. The client connection token is derived from an
ACMTOKEN field passed in the ACMTOKEN field. The CPT-ACM is passed to
the daughter task from the server. After the new transaction is initiated, the
LISTEN service continues waiting for new client connections. The LISTEN
service continues to listen and start client connections until an error occurs

When a transaction ID is specified in the ACMTRNID field in the CPT-ACM
parameter list, the LISTEN service does not return control to the calling program
until a failure is detected. The caller’s argument list is generally not updated,
with exception to the return code information.

The return code ACMRTNCD and diagnostic code ACMDGNCD fields should
be interrogated to determine the reason for failure. The general return code and
the diagnostic code indicate the nature of the failure. The diagnostic code
generally contains a specific code that is generated by the transport provider.

Completion Information

LISTEN Service 7–11

Completion Information When the ACMTRNID Field Is Unspecified in the
CPT-ACM

When no transaction ID is specified in the ACMTRNID field in the CPT-ACM
parameter list, the LISTEN service returns control to the calling program when
connection with a client is established. The caller’s argument list is updated with
information related to the new connection.

The LISTEN service initializes the server environment with the transport
provider (API) and waits for a connection request. Each connection updates
connection information within the CPT-ACM. Establishing a listening connection
and a client connection are represented by tokens. Establishing a client
connection updates the CPT-ACM with information relative to the connection.
The information is returned to the user or is passed to the data processing
transaction.

The local and remote port, IP address, and host names are resolved. Negotiated
transport provider SEND and RECEIVE buffering values are returned. The ACM
return code (ACMRTNCD) must be checked to determine the success or failure
of LISTEN service. A zero (0) return code in the ACMRTNCD field indicates a
successful establishment of a client connection.

The CPT-ACM contains two tokens representing endpoints to the transport
provider. The first token (ACMTOKEN) represents the client session connection
and is used for data transfer. The other token (ACMTLSTN) represents the
listening server. This listening server can only be referenced within the CPT
CLOSE service. This provides the explicit ability to close a server or listening
connection. All other CPT services performed with the LISTEN token fail with an
invalid token. Implicit cleanup of the LISTEN token is provided by the TRUE
interface. Therefore, an explicit call to the CLOSE service is not required.

The return code ACMRTNCD and diagnostic code ACMDGNCD fields should
be interrogated to determine the reason for failure. The general return code and
the diagnostic code indicate the nature of the failure. The diagnostic code
generally contains a specific code that is generated by the transport provider.

Return Codes

7–12 PL/I Programmers Guide

Return Codes
The LISTEN service returns codes indicate the results of the execution. These
values are in the ACMRTNCD (R15) and ACMDGNCD (R0). The diagnostic code
typically indicates the transport provider return code.

A sample PL/I structure is provided in cpthlq.T09MAC, in member T09KPRCS.
It details the variable field names contained in the distributed samples and the
examples in this guide. See the appendix “Return Codes” for a sample copy of
the T09KPRCS structure. A description of the problem causing the associated
return code is contained in this structure.

This table lists the LISTEN service return codes.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

4 4 No CPTWNEGO System limits applied to buffers
or queue sizes.

6 6 Yes CPTWBLCK Non-blocking call to the LISTEN
service.

17 11 No CPTEVERN Control block version number
not supported.

18 12 Yes CPTECONN Required parameter not passed.
For example, host, port, …

19 13 No CPTEPROT Specified protocol not
supported.

26 1A No CPTETRID Unable to start a new task.

31 1F No CPTEFRMT Other socket call parameter list
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

36 24 No CPTEDRAN TCPIP environment is no longer
accepting any new endpoints.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

Return Codes

LISTEN Service 7–13

Decimal Hex Diagnostic
Code

Variable Description

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

143 8F Yes CPTEPROC Procedural error.

254 FE Is Abend
code

CPTABEND Abnormal termination. Note that
the diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

Usage Notes

7–14 PL/I Programmers Guide

Usage Notes
The LISTEN service lets user-written application programs implement TCP/IP
server facilities. Server applications passively wait, then establish connections
with single- or multithread support. The LISTEN service generalized parameter
list (ACM) describes the application’s communications requirements and
information related to established connections. The CPT-ACM contains fields
initialized by both a user application and by the LISTEN service, on completion.

There are required and optional fields initialized by a user or calling application.
The ACM version number, ACMVERS, and the local port, ACMLPORT, are
required. Optional fields control data transfer buffering, statistics, tracing, and
subtask initialization.

When the LISTEN service completes or the data processing task executes, the
ACM contains information related to the established connection. A token that
identifies the connection is returned in the ACM, and must be used in all
subsequent requests that refer to the connection. The application program should
make no assumptions regarding the format of a token, other than it is an
unsigned, full word value.

Information related to the negotiated buffer values, host names, host addresses,
and transport provider addresses are returned in the CPT-ACM.

The version number, ACMVERS, indicates the CPT release level in which this
user application program is written. This required field must be set to
ACMVERSN (binary 2) and is validated by the LISTEN service before processing
the request.

The function code, ACMFUNC, indicates the CPT callable service ID and is
initialized by the CPT service stub program. The function code identifies
argument lists within the error or trace logs, and dumps analysis.

The transaction ID field, ACMTRNID, identifies the CICS task to process data for
a session. This is an optional field that causes the LISTEN service to execute
continuously. The LISTEN service starts a new transaction after a client
connection is established. An updated CPT-ACM is passed to the data processing
task. Control is not returned to the calling program until an error occurs. The
return code indicates the reason for the failure. Errors indicating the transport
provider, CICS, or CPT termination are acceptable. Errors indicating port in use,
API unavailable, or program checks should be investigated.

Usage Notes

LISTEN Service 7–15

User application programs can control CPT and transport provider data transfer
buffering. ACMMSEND and ACMMRECV specify the size of buffers allocated.
The SEND and RECEIVE buffers are allocated on initial entry into either the
SEND or RECEIVE service. The corresponding values used by the SEND and
RECEIVE services are independent of each other.

■ The SEND service multiplies the queue and buffer values to determine
output storage requirements

■ The RECEIVE service performs a similar function to determine input storage
requirements

The product of the queue and buffer values cannot exceed 32 KB.

The CPT SEND service uses the ACMMSEND value and the CPT RECEIVE
service uses the ACMMRECV value. These values indicate the maximum
number of user data bytes that can be transferred by the application in a single
SEND or RECEIVE request to the transport provider. The user application is not
limited to these values within the data transfer services. However, it is important
to note that multiple transport provider or API requests are issued to complete
the caller’s request. Information on queue and buffer size is in the descriptions of
RECEIVE and SEND.

Initially, the tuning of data transfer storage may not be a concern. However, the
ability to control storage allocation can prove beneficial to the application or
CICS region. You should consider enabling the statistics option to gather CPT
statistical information. This information can set the SEND or RECEIVE buffer
size values.

The LISTEN service can modify the data transfer buffer allocation values.
These values are negotiated with the transport provider and, depending on the
site configuration, can be reduced. Any application dependent on these values
should check them on return. These values are generally not modified when
giving reasonable numbers. However, it is advisable to check with the site
administrator for the maximum values of the API transport services.

A number of arguments are not set by the calling application, but are returned to
the caller. These values represent information related to the client connection and
can be used by the application. The local port, host name, and IP address are
returned as well as the client’s corresponding values. An ACM is passed the
started transaction when a TRANSID is specified in the caller’s listen argument
list.

Note: It is recommended that programmers set the ACMOPTN1_NODNR field
to prevent the extra overhead of making DNR calls to resolve the remote IP
address whenever possible.

Network Considerations

7–16 PL/I Programmers Guide

Network Considerations
The ACM is a common data structure used for both client and server connection
initialization. There are common and unique values specified for a particular
service request.

This table describes network considerations for PL/I API:

Name Server Conditions for Listen Client Conditions for Connect

ACMLNAME Local IP host name returned
to user application.

Local IP host name returned to
user application.

ACMLPORT Local server or listening
transport provider well-
known port selected by user
application.

Local assigned transport
provider port returned to user
application.

ACMRADDR Remote IP host address
returned to user application.

Remote IP host address selected
or returned to user application.

ACMRNAME Remote IP host name
returned to user application.

Remote IP host name selected or
returned to user application.

ACMRPORT Remote client transport
provider port returned to
user application.

Remote server transport
provider well-known port
selected by user application.

ACMTIMEO Client-Data Listener timeout
value.

ACMTLSTN Listen token returned to user
application.

ACMTRNID Listen START transaction ID.

Complete Parameter List

LISTEN Service 7–17

Complete Parameter List
Note: For a recommended list of parameters, see Recommended ACM
Parameters.

ACMBCKLG Maximum size of the LISTEN backlog queue.

This field is used to set the size of the LISTEN queue for pending connection
requests and overrides the QLSTN= value from the T09MCICS configuration
macro.

ACMCDTBL Translate table. For the Client/Data Listener, specifies the name of the translate
table to use for translating the initial input stream.

Default: None.

ACMCLNTL Client data length. Specifies the maximum length of data the LISTEN service
tries to receive for the initial data stream. This value is useful when the amount
of client data being sent for the initial stream is different from the normal length
of 50 bytes. This speeds processing by having the LISTEN service be able to
continue processing without waiting the full ACMTIMEO value for the initial
data.

Default: 50.

ACMDGNCD Diagnostic code. Indicates the diagnostic code received by the LISTEN service for
a transport provider request. There is a detailed explanation of this value in the
transport provider’s API Programmer’s Reference Guide.

Default: None.

ACMFUNC Function code. Indicates the function or callable service requested by the
application program.

This field is not set by the application, but is initialized by the TRUE interface
stub program.

Default: None (generated by service stub).

ACMLADDR Local IP host address. Indicates the local host internet address. The local host
internet address is updated on establishment of a client connection, and is
returned to the caller.

 This field is an unsigned four-byte integer value.

Default: None.

Complete Parameter List

7–18 PL/I Programmers Guide

ACMLNAME Local IP host name. Indicates the local host internet name. The local host internet
name is updated on establishment of a client connection, and is returned to the
caller.

This field is a 255-byte character string that is padded with blanks.

Default: None.

ACMLPORT Required. Listen well-known service port. Indicates the local transport layer
address or port. This value represents the well-known port on which a server
application listens for connection requests.

This field is an unsigned positive integer with a maximum value of 65,534. The
value must be unique for each server application.

Default: None.

ACMMRECV API receive buffer size. Specifies the maximum number of user data bytes that
can be transferred by the application, in a single RECEIVE request, to the
transport provider (API). This value lets applications control input processing
and can affect throughput rates. The value is negotiated with and can be
modified by the transport provider.

Total allocation cannot exceed 32 KB.

Default: 1024.

ACMMSEND API send buffer size. Specifies the maximum number of user data bytes that can
be transferred by the application in a single SEND request to the transport
provider (API). This value lets applications control output processing and can
affect throughput rates. The value is negotiated with and can be modified by the
transport provider.

Total allocation cannot exceed 32 KB.

Default: 1024.

ACMMSOCK Maximum sockets per allowed for your transaction

This field overrides the MSOCK= value from the T09MCICS configuration macro.

Default: None.

Complete Parameter List

LISTEN Service 7–19

ACMOPTN1 Byte one(1) of the TCP connection initialization options.

ACMOPTN1_CTRAN For Client-Data Listener, indicates that the input stream
is to be translated.

ACMOPTN1_LTRAN Client-Data Listener option. Specifies that the Listen call
will receive the input data stream to determine the
transaction ID to start. See Client-Data Listener Option for
the required input formats and additional information on
using this listener type. This option must be used with
ACMTIMEO, and should not be used with ACMTRNID.

ACMOPTN1_NBLKO Not used by the LISTEN service.

ACMOPTN1_NODNR DNR Suppression option. Skips internal DNR calls to
resolve and return the remote IP address into an IP name in
the ACMRNAME field. If an application is designed such
that TCP connection establishment and release happens
frequently, this option can save processing time.

 Important! It is strongly recommended that you use NODNR
option, since this can create huge 30-second connection
establishment delays if your DNS is not correctly configured to
resolve IP names into IP addresses. Most DNS servers do not
support this feature, and the call takes 30 seconds to time out.
Therefore, your listening port could be in a blocked state,
allowing no new connection establishment for a period of 30
seconds while waiting for the failed DNS call to time out.

ACMOPTN1_OTRAN For Client-Data Listener, indicates that an optional
translate table, named in ACMCDTBL, is to be used in the
translation process.

ACMOPTN1_SYNC Listen Syncpoint option. Issues a CICS syncpoint before
starting any transaction from the LISTEN service.

Default: None.

ACMOPTN2 Byte two(2) of the TCP connection initialization options.

ACMOPTN2_CLEN Indicates the ACMCLNTL field is present and valid.

ACMOPTN2_MRO Reserved for CPT/MRO feature.

ACMOPTN2_SCTY Indicates the ACMSECLM field is present and valid.

ACMOPTN2_USRID Indicates the ACMUSRID field is present and valid.

ACMOPTN2_OP2SC Specifies whether a comma can be part of the first data
packet passed to the CSKL replacement listener. It permits
one or more commas in the first data packet.

Default: None.

Complete Parameter List

7–20 PL/I Programmers Guide

ACMOPTN3 Specifies TCP connection initialization options.

ACMOPTN3_NOT Specifies that the session will not participate in the STEAR
GIVE and session inactivity timeouts.

Default: None.

ACMQRECV API receive queue size. You should only specify one. Adding extra buffers
wastes storage and does not improve performance.

Default: One.

ACMQSEND API send queue size. You should only specify one. Adding extra buffers wastes
storage and does not improve performance.

Default: One.

ACMRADDR Remote IP host address. Indicates the remote host internet address. The remote
host internet address is updated on establishment of a client connection, and is
returned to the caller.

This field is an unsigned four-byte integer value.

Default: None.

ACMRNAME Remote IP host name. Indicates the remote host internet name. This field is a 255-
byte character string that is padded with blanks. The remote host internet name
is updated on establishment of a client connection, and is returned to the caller.

Default: None.

ACMMROAS Reserved for the CPT/MRO feature.

ACMMROEP Reserved for the CPT/MRO feature.

ACMRPORT Remote client port. Indicates the remote transport layer address or port. This
value is returned to the caller.

This field is an unsigned positive integer with a maximum value of 65,534.

Default: None.

ACMRTNCD Return code. Indicates the return code set by the LISTEN service. This value is
also returned in register 15 and indicates the success or failure of the service.

Default: None.

Complete Parameter List

LISTEN Service 7–21

ACMSECLM Security program. Specifies the security exit program to use when a connection
request is processed by this LISTEN service.

Note: The ACMOPTN2_SCTY option must also be specified. See the Security
Program section of the chapter “CPT API Services” for more information.

Default: None.

ACMSRVCE This field remains only for downward compatibility purposes and is ignored. It
is no longer supported in version 6 of CPT.

ACMSTATS Specifies statistics logging options for the application program. The facility can
be used for debugging and tuning during development.

ACMSTATS_CONN Specifies that a message be generated on establishment of
either a listen service or a data transfer connection. These
messages are generated by the CPT LISTEN and
CONNECT services.

ACMSTATS_TERM Specifies that a message be generated on termination of an
established connection. These messages are generated by
the CPT CLOSE service.

Default: Zero (no statistics logging).

ACMTIMEO Client-Data Listener timeout values. Specifies the maximum number of seconds
that a Listener can wait to receive the client data stream when the
ACMOPTN1_LTRAN option is specified.

Default: 30.

ACMTLSTN Listen service token statistics. Specifies the token used by the LISTEN service.
This token is not available for data transfer. The only valid function that can be
performed is a CLOSE request for long running active listeners. Generally, this
value is not used by the application unless an explicit call to the CLOSE service is
required. Read the description for ACMTOKEN (earlier in this section) for all
other services.

Default: Zero (token returned).

ACMTOKEN TCP connection token. Specifies the token created and returned by the LISTEN
service. It will be used in all subsequent calls for the client application.

Default: Zero (token returned).

Complete Parameter List

7–22 PL/I Programmers Guide

ACMTRACE Note that the tracing functionality was moved in Version 6 of Unicenter
SOLVE:CPT. A greatly enhanced tracing capability is now available using the
TCPEEP tracing command. See the Administrator Guide for more detail. These
tracing fields remain only for downward compatibility purposes and are
ignored.
Default: Zero (no trace logging).

ACMTRNID Listen start transaction ID. A four-byte character string that the LISTEN service
starts on successful establishment of a new connection. If TRANSID is specified,
the LISTEN server loops for new connections and does not return to the calling
program until CICS, CPT, or transport provider (API) termination.

This field is optional and is not modified by the LISTEN service.

Note: This field should not be specified if the ACMOPTN1_LTRAN option and
ACMTIMEO value are specified.

Default: None.

ACMUCNTX One word of user context. Specifies one arbitrary word of user context to be
associated with the connection. The information provided is not interpreted by
CPT, and is saved with other connection information.

Default: Zero (no user context).

ACMUSRID User ID. Specifies the user ID that this LISTEN service uses if starting daughter
transactions (ACMTRNID or ACMOPTN1_LTRAN specified). This allows the
started daughter transactions to inherit the security permissions of the specified
user ID. The ACMOPTN2_USRID option must also be specified. If a security exit
is used, then the security exit may change the user ID.

Default: None.

ACMVERS Required. Version. Indicates the version number of the CPT argument used by
the calling program. It must be set to a binary two(2) for this release of CPT.

Default: None.

Client-Data Listener Option

LISTEN Service 7–23

Client-Data Listener Option
The Unicenter SOLVE:CPT Client/Data Listener option allows one listening
TCP/IP socket port to serve as a multi-function server. This is achieved by
passing the CICS/TS transaction name in the initial TCP packet. In this way, a
single server can distribute connections to many different applications.

This server is compatible with applications written to use IBM’s CICS/TS
provided listener CSKL.

Important! This additional server flexibility does have a performance impact. By having
the listener do a receive as part of its processing, the servicing of new connections could
be delayed. For this reason, this listen server type is not recommended for high
connection volume services.

In an attempt to avoid many of the inherent performance problems, the client-
data listener tool service is broken into two transactions:

■ The first transaction handles connection establishment thus blocking the port
for a minimal amount of time

■ The second phase of the listener, waits for the client data independent of
blocking the connection establishment port

To further enhance performance:

■ Consider using the CLNTLEN parameter whenever possible

■ Start multiple client-data listeners

In this way, any high volume applications can be on their own server port
independent of low volume applications. There are no restrictions to the number
of client data listeners that can be started. By following these suggestions, any
possible performance issue can easily be eliminated.

The design of the Client-Data Listener mimics the format of a standard CICS/TS
3270 terminal data stream. In other words, this is very similar to what you are
use to seeing come into a standard CICS/TS terminal interaction on initialization
of a terminal transaction. The first four characters of the initial data packet is the
transaction name as if you were coming from a real 3270 CICS/TS terminal.
Another similarity is that the transaction name can be followed by optional data
(parameters) that are passed to the transaction. This is a great listener to have for
providing multiple applications with TCP connectivity within one long running
server transaction. See the previous performance notes for other considerations.

Client-Data Listener Option

7–24 PL/I Programmers Guide

The client data-listener works in the following manner:

When a connection is received, the phase two listener is started to free up
(unblock) the original server listening port.

The phase two listener:

■ Does a TCP receive from the network

■ Expects one of the following client data formats to be received:
TRAN
TRAN,UUUUUUUUUUUU
TRAN,UUUUUUUUUUUU,IC,HHMMSS
TDQN,UUUUUUUUUUUU,TD
TRAN,,IC,HHMMSS
TDQN,,TD

Depending on the format of data, the listener determines how the actual
spawned application daughter is started. Continue reading for further details on
how this works.

Coding a value in the CLNTTIME field greater than zero turns on the client-data
listener. There are also options for translating the client data string and changing
the translation table if that is desired.

Default: No translation.

TRAN|TDQN A one- to four-character field followed by an optional
comma implying more parameters. The field can contain
one of the following:

 ■ The transaction ID to start

■ A transient data queue (TDQ) name to which the 1 to 35-
bytes of optional user data is written—if provided

UUUUUUUUUUUU 1- to 35-bytes of user data passed to the started transaction
or written to the transient data queue in the field
CLNTDATA.

IC Specifies that transaction TRAN be started in HHMMSS.

 Note: If left blank, startup is immediate.

HHMMSS Hours, minutes, and seconds for the IC option.

TD Indicates that the optional client data field
CLNTDATA(UUUUUUUUU above) will be written into
the transient data queue, TDQN.

Client-Data Listener Option

LISTEN Service 7–25

Client-Data Option Data Structure

The data structure passed to the invoked program has the following format. This
structure is accessed by through a EXEC CICS RETREIVE command in the
invoked (spawned daughter) transaction. A sample PL/I structure with member
name of T09KPCSK is provided and is available to you with the distributed
software in the cpthlq.T09MAC library. For greater details, see the Client Data
Listener Transaction Start section in appendix “Control Block Layouts.”

5 TAKE_TOKEN FIXED BIN (31) INIT (0), /* Socket ID */
5 LSTN_NAME CHAR (8) INIT(LOW(8)), /* Listener name */
5 LSTN_SUBNAME CHAR (8) INIT(LOW(8)), /* Listener subname */
5 CLIENT_DATA CHAR (35) INIT(LOW(8)), /* Client data */
5 LSTN_RESERV1 CHAR (1) INIT(LOW(8)), /* For C lang delim */
5 IP_FAMILY FIXED BIN (15) INIT (0), /* IP family/domain */
5 IP_REM_PORT FIXED BIN (15) INIT (0), /* Remote port */
5 IP_REM_ADDR FIXED BIN (31) INIT (0), /* Remote IP address*/
5 LSTN_RESERVD CHAR (8) INIT(LOW(8)); /* Reserved */

Examples

Client/Data Listener
with Translation

To invoke the Client/Data Listen Tool and automatically translate the input
stream from ASCII to EBCDIC, you must specify the following options on the
T09MLSTN macro in the T09CONxx configuration table:
T09MLSTN PORT=2002,CLNTIME=5,CLNTRNS=YES,CLNTTBL=MYTABLE,SOCKCOMP=N

In this example, the Listen tool:

■ Listens for connections on port 2002

■ Waits for up to five seconds for the input stream after establishing a
connection

■ Translates the input stream using the translation table MYTABLE

Important! When one specifies SOCKCOMP=N or lets it default on the T09MLSTN
macro, it creates a CPT session. The daughter session will have a CPT token passed in the
TAKE_TOKEN field of the retrieved CLNT-PARM control block.

When one specifies SOCKCOMP=Y on the T09MLSTN macro, it creates an
EZASOKET API session. The daughter session will have an EZASOKET socket number
passed in the TAKE_TOKEN field of the retrieved CLNT-PARM control block.

Client-Data Listener Option

7–26 PL/I Programmers Guide

Invoking the Listener with Translation from an PL/I CPT

The option, ACMOPTN1_LTRAN, is used in conjunction with ACMTIMEO. It is
mutually exclusive of the use of the ACMTRNID field. ACMOPTN1_LTRAN
option indicates to the LISTEN service that the connecting client application will
specify what server functions to execute. When the LISTEN service receives a
CONNECT request and ACMOPTN1_LTRAN is specified, it uses a partial
record timed RECEIVE (see RECEIVE service options) to get the client’s data.

To invoke the Client-Data Listener from a PL/I CPT API program, you must
specify these options in the ACM:

This Option... Performs this Function...

ACMTIMEO=nnnn Specifies the maximum time the Listen
Service waits for the data stream.
(Required).

ACMOPTN1
 =ACMOPTN1_LTRAN

Triggers the Client/Data Listener option.
(Required).

ACMOPTN1
 =ACMOPTN1_CTRAN

Indicates that the input stream should be
translated. (Optional).

ACMOPTN1
 =ACMOPTN1_OTRAN

Indicates that an optional translation table,
named in ACMCDTBL, is to be used in the
translation process. (Optional).

ACMCDTBL=table_name Specifies the name of the translation table to
use for translating the initial input stream.
(Optional).

ACMOPTN2
 =ACMOPTN2_CLEN

Indicates the ACMCLNTL data length field
is specified. (Optional).

ACMCLNTL=nnn Specifies the maximum length of data the
LISTEN service will try to receive for the
initial data stream. This value is useful
when the amount of client data being sent
for the initial stream is different from the
normal length of 50 bytes. This speeds
processing by having the LISTEN service be
able to continue processing without waiting
the full ACMTIMEO value for the initial
data. (Optional).

Client-Data Listener Option

LISTEN Service 7–27

Example of a PL/I Program, Client-Data Listener
■ Listens for connections on port 1984.

■ Uses automatic translation of the input stream.

■ Set the client data field ACMCLNTL to be four (just for the length of the
CICS transaction name) in the input stream. This speeds up connection
establishment.

■ Set the timeout to five seconds for the amount of time to wait for the client
data to arrive on the connection.

■ Disable resolving IP addresses into DNS hostnames

Note: The statements relating to the LISTEN service appear in bold.

SAMP2: PROCEDURE OPTIONS (MAIN);
DCL T09FLST ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ACM,
 %INCLUDE SYSLIB(T09KPACM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
%INCLUDE T09KPCON;
 /*
 CPT LISTEN Connection Management service request
 */
 ACMLPORT = 1984;

 ACMOPTN1 = ACMOPTN1_LTRAN /* client data type listener */
 + ACMOPTN1_CTRAN /* translate client data stream */
 + ACMOPTN1_NODNR; /* do not do DNS name resolution */
 ACMOPTN2 = ACMOPTN2_CLEN; /* client data length specified */
 ACMCLNTL = 4; /* client data length = 4 */
 /* just the transaction ID */
 ACMTIMEO = 5; /* time out value for receive */
 CALL T09FLST (CPT_ACM);
 IF ACMRTNCD ^= 0
 THEN DO;
 /* Process and log LISTEN error */
 END;

 EXEC CICS RETURN;

RCVFROM Service 8–1

Chapter

8 RCVFROM Service

The RCVFROM (Receive From) service enables you to develop connectionless
client and server applications.

This service call is only for UDP applications.

The RCVFROM service provides these basic functions:

■ Establishes a UDP server endpoint represented by a new token and starts
receiving datagrams on a user-specified well-known port.

Indicate this function to the RCVFROM service by passing an ADTTOKEN
equal to zero. RCVFROM then creates all the internal control blocks and the
RCVFROM buffer queue. Even though the SENDTO buffer queue is not
allocated for this endpoint (token) until the SENDTO service is called, the
SENDTO buffer size and number must be specified at this time because they
are negotiated with the transport provider and recorded in the internal
Unicenter SOLVE:CPT control blocks at endpoint creation time. On return
from the RCVFROM service, ADTTOKEN contains the value that is passed
to subsequent RCVFROM and SENDTO service calls.

■ Receives a datagram at a previously established UDP endpoint represented
by an existing token.

This functionality makes the RCVFROM service call just a data transfer call
that can be used by a client or server application. The RCVFROM buffer
queue is only allocated upon the first call to the RCVFROM service, whether
or not ADTTOKEN is equal to zero.

UDP tokens created with the RCVFROM or SENDTO services cannot be passed
to the TCP-only services, CONNECT, LISTEN, SEND, and RECEIVE. All other
Unicenter SOLVE:CPT service calls such as CLOSE, GIVE, TAKE, TRANSLATE
are available to UDP applications.

The non-blocking option of the RCVFROM service, ADTOPTN1_NBLKR, allows
applications to be developed that can poll a well-known UDP port, or send to a
remote UDP server and then make a predetermined number of RCVFROM calls
to get back a response.

Client-Data Listener Option

8–2 PL/I Programmers Guide

Given the general unreliable nature of UDP, not blocking on a RCVFROM call
can build in some flexibility with regards to handling lost datagrams. The other
option of course is to use a timeout value in the ADTTIMEO field to make sure
that control is returned to your program within a reasonable amount of time.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the RCVFROM service call

■ Recommended ADT Parameters—Lists parameters normally used and
recommended for the RCVFROM service call

■ Usage Example– Provides a sample program shell for using the RCVFROM
service call

■ Parameter Values Returned in the ADT—Lists fields that are updated in the
ADT control block upon return from the RCVFROM service call

■ PL/I Structures—Provides the distributed PL/I structures that are used by
the RCVFROM service call

■ Sample Programs—Lists and describes the distributed sample PL/I
programs that use the RCVFROM service call along with other service calls

■ Network Considerations—Reviews network-related issues that may
influence your environment

■ Return Codes—Lists return codes that can apply to the RCVFROM service
call

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the RCVFROM service call

Call Syntax

RCVFROM Service 8–3

Call Syntax
CALL T09FRCF (CPT_ADT);

Recommended ADT Parameters
The following list contains the recommended parameters for use with the
RCVFROM service. These parameters are set within the ADT control block.

See PL/I Structures for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameters Description

ADTBUFFA User data address.

ADTBUFFL User data length.

ADTOPTN1 Set to ADTOPTN1_TMRCV for timed receive.

ADTTIMEO RECEIVE timeout value set to a reasonable timeout for your local
network.

ADTTOKEN Data transfer token set to zero(0) for first time, or copied from
previous SENDTO or RCVFROM service call.

ADTVERS Version should be set to ACMVERSN (binary 2).

Usage Example

8–4 PL/I Programmers Guide

Usage Example
In this example, a subset of the actual statements required is shown to emphasize
the use of a RCVFROM call. This example sends then receives data from a
remote host. The token is loaded from the ADT and used by all of the following
Unicenter SOLVE:CPT service requests. The return code is checked to determine
RCVFROM service completion status.

Note: The statements needed for the RCVFROM service appear in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FRCF)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
 %INCLUDE SYSLIB(T09KPRCS);
DCL DATA BIT (1) INTI ('1'B);
DCL MESSAGE CHAR (80);
%INCLUDE T09KPCON;
 /*
 Application to create request data
 */

 /*
 SEND TO the initial request
 */
 ADTRPORT = 1980;
 ADTRPORT = ’123.234.105.199’;
 ADTBUFFA = ADDR(MESSAGE);
 ADTBUFFL = STG (MESSAGE);
 CALL T09FSNT (CPT_ADT);
 IF ADTRTNCD ^= 0
 THEN DO; /* log SENDTO error */
 /*
 CPT RECEIVE FROM the response
 */
 ADTBUFFA = ADDR(MESSAGE);
 ADTBUFFL = ATG (MESSAGE);
 ADTTIMEO = 5; /* timeout */
 ADTOPTN1 = ADTOPTN1_TMRCV; /* use timed receive */
 CALL T09FRCF (CPT_ADT);
 IF ADTRTNCD ^= 0
 THEN DO;
 /*
 Process and log RECVFROM error
 */

 /*
 Application to process response data
 */

 EXEC CICS RETURN;

Parameter Values Returned in the ADT

RCVFROM Service 8–5

Parameter Values Returned in the ADT
After the RCVFROM service call returns control to your application program, the
following fields are propagated with valid information. These updated values
are passed back to the application in the ADT control block.

Parameters Description

ADTBUFFA Data buffer filled with data from the network.

ADTBUFFL The number of user data bytes actually received.

ADTDGNCD Diagnostic Code.

ADTLADDR Local IP Host Address.

ADTLNAME Local IP Host Name.

ADTMRECV API receive buffer size.

ADTMSEND API send buffer size.

ADTQRECV API receive queue size, set to one.

ADTQSEND API send queue size, set to one.

ADTRADDR Remote IP Host Address.

ADTRNAME Remote IP Host Name.

ADTRTNCD Return Code.

ADTTOKEN Token—Connection or endpoint.

PL/I Structures

8–6 PL/I Programmers Guide

PL/I Structures
Sample PL/I structures are provided in the distributed software and are
available to you in cpthlq.T09MAC. Variable field names contained in the
distributed samples and the examples in this guide refer to these structures.

T09KPADT PL/I structure name for the ADT. For detailed information
and a sample copy of the PL/I structure, see the ADT:
Argument for Data Transfer Used by RECIEVE, SEND,
RECVFROM, and SENDTO Services Service section in
appendix “Control Block Layouts.”

Note: An excerpt of the PL/I constants that apply to ADT
calls immediately follows the ADT in the appendix.

T09KPCON The PL/I structire name for PL/I constants that apply to
the various service calls. For detailed information and a
sample copy of the PL/I copybook see T09KPCON: PL/I
Call Constants Copybook section of the appendix “Control
Block Layouts.”

Sample Programs
Sample PL/I source code is provided for your use. You should be able to find a
sample that matches your programming requirement. For more complete details
on what function a sample program provides, read the comments program
descriptions in the “Unicenter SOLVE:CPT API Services” chapter and the at the
beginning of the sample members listed below. These sample program members
are available in the distributed software in the cpthlq.T09SAMP library.

Name Description

T09PPCLU Sample UDP client.

T09PPSVU Sample UDP server.

Network Considerations

RCVFROM Service 8–7

Network Considerations
The ADT is a common data structure used for both client and server UDP
applications. There are common and unique values specified for a particular
service request.

Name Server Conditions for
RCVFROM

Client Conditions for
SENDTO

ADTLPORT Local server well-known port
selected by user application.

Local assigned transport
provider port returned to user
application.

ADTRPORT Remote client transport
provider port returned to
user application.

Remote server transport
provider well-known port
selected by user application.

ADTLADDR Local IP host address
returned to user application.

Local IP host address
returned to user application.

ADTRADDR Remote IP host address
returned to user application.

Remote IP host address
selected by or returned to user
application.
The client must specify this
field or ADTRNAME.

ADTLNAME Local IP host name returned
to user application.

Local IP host name Returned
to user application.

ADTRNAME Remote IP host name
returned to user application
only if ADTOPTN1_DODNR
is specified. This is not the
recommended setting.

Remote IP host name selected
by or returned to the user
application.
The client must specify this
field or ADTRADDR. If
ADTRADDR is used
ADTRNAME will only be
returned if
ADTOPTN1_DODNR is
specified.

Return Codes

8–8 PL/I Programmers Guide

Return Codes
The RCVFROM service returns codes indicating the results of the execution.
These values are in the ADTRTNCD and ADTDGNCD fields.

Structure T09KPRCS contains equates and descriptions for the possible return
codes. T09KPRCS is available in the distributed software in cpthlq.T09MAC. For
a sample copy of the T09KPRCS structure, see the appendix “Return Codes.”

The following table lists the return codes that can apply to the RCVFROM call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

1 1 No CPTWTIMEO Timed receive call timed out.

6 6 Yes CPTWBLCK Non-blocking call to the
RCVFROM service.

17 11 No CPTEVRSN Control block version number
not supported.

18 12 Yes CPTECONN Required Parameter not passed.
For example, host, port, …

19 13 No CPTEPROT Specified protocol not
supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

21 15 No CPTEBUFF Buffer address or length invalid.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

72 48 Yes CPTEPRGE Remote connection environment

Return Codes

RCVFROM Service 8–9

Decimal Hex Diagnostic
Code

Variable Description

terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination.
The diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

Complete Parameter List

8–10 PL/I Programmers Guide

Complete Parameter List
ADTBUFFA User data address. Indicates the storage address into which the UDP datagram is

received (RCVFROM service). This is a contiguous segment of storage accessible
to the user task. The content of all user data is application dependent, and not
interpreted by either Unicenter SOLVE:CPT or the transport provider.

The storage area can be aligned on any boundary convenient for the application
program.

Default: None.

ADTBUFFL Specifies the length in bytes of the ADTBUFFA field when the RCVFROM is
issued. After the RCVFROM call completes, ADTBUFFL indicates the actual
length returned in ADTBUFFA.

If the incoming datagram does not fit into ADTBUFFA for a length of
ADTBUFFL, then the warning, CPTWNEOM is passed back to the caller in
ADTRTNCD, indicating that more RCVFROM calls are required to get the entire
datagram.

It is an error to call the RCVFROM service with an ADTBUFFL of zero.

ADTDGNCD Diagnostic code. Indicates the diagnostics code set by the RCVFROM service.
This value generally indicates a transport provider return code.

Default: None.

ADTFUNC Function code. Indicates the function or callable service ID requested by the
application program this field should not be set by the application, but rather is
initialized by the TRUE interface stub.

Default: None.

ADTLADDR Local IP host address. Represents the IP address of the local host and is filled in
on return to the client application.

Default: None.

ADTLNAME Local IP host name

Indicates the local host internet name. The local host internet name is returned to
the caller of the RCVFROM service.

This field is a 255-byte character string that is padded with blanks.

Default: None

Complete Parameter List

RCVFROM Service 8–11

ADTLPORT Local well-known service port (used when ADTTOKEN=0). Indicates the local
transport layer port on which the calling application will be receiving
(RCVFROM) datagrams.

If the SENDTO service creates the token, this port number is assigned by the
transport layer and returned to the caller. If the RCVFROM service creates the
token, this is the well-known port requested by the caller. If the RCVFROM
service is creating the token, this value must be specified.

This field is an unsigned positive integer with a maximum value of 65,534. The
value must be unique for each server application.

Default: None.

ADTMRECV API RECEIVE buffer size (used when ADTTOKEN=0). Specifies the maximum
number of user data bytes that can be transferred by the application in a single
RCVFROM request to the transport provider (API).

This value lets applications control input processing and can affect throughput
rates. The value is negotiated with the transport provider and can be modified by
the transport provider.

Total allocation cannot exceed 32 KB.

Default: 1024

ADTMSEND API send buffer size (used when ADTTOKEN=0). Specifies the maximum
number of user data bytes that can be transferred by the application in a single
SENDTO request to the transport provider (API).

This value lets applications control output processing and can affect throughput
rates. The value is negotiated with the transport provider and can be modified by
the transport provider.

Total allocation cannot exceed 32 KB.

Default: 1024.

ADTMSOCK Maximum number of sockets per INITAPI. Overrides the MSOCK= value from
the T09MCICS configuration macro.

Default: 50

ADTNSLCT Number of entries in the select vector. Not used by the RCVFROM service.

Complete Parameter List

8–12 PL/I Programmers Guide

ADTOPTN1 Specifies data transfer options. These are the ADT options that apply to UDP
data transfer requests:

ADTOPTN1_DODNR Execute internal DNR calls during UDP data transfer
service routine calls (RCVFROM and SENDTO) to resolve
remote IP addresses into IP names in the ADTRNAME
field.

Important! It is strongly recommended that you not use the ADTOPTN1_DODNR
option, since this can create huge 30 seconds delay in data reception if your DNS is not
correctly configured to resolve IP names into IP addresses. Most DNS servers do not
support this feature, and the call takes 30 seconds to time out.

ADTOPTN1_NBLKR Do not block a call to the RCVFROM service. If no
datagrams are currently available, the return code,
CPTWBLCK, is returned in ADTRTNCD.

ADTOPTN1_TMRCV Allows the caller to wait up to a specified amount of
time for a datagram. It must be used with the
ADTOPTN1_NBLKR option, and ADTTIMEO must be
specified.

These options can be toggled on every UDP data transfer call even if the caller is
using the same token.

Default: None.

ADTQRECV API receive queue size. You should only specify one. Adding extra buffers
wastes storage and does not improve performance.

Default: One.

ADTQSEND API send queue size. You should only specify one. Adding extra buffers wastes
storage and does not improve performance.

Default: One.

ADTRADDR Remote IP host address. Indicates the remote host IP address of the sender of the
incoming UDP datagram. This value is returned to the caller of the RCVFROM
service and may be different for each datagram received.

This field is an unsigned four-byte integer value.

Default: None.

Complete Parameter List

RCVFROM Service 8–13

ADTRNAME Remote IP host name. Indicates the remote host internet name.

 It is only resolved through internal DNR calls and returned to the caller of the
UDP data transfer service routines (RCVFROM and SENDTO) if the ADTOPTN1
flag, ADTOPTN1_DODNR is specified. This is to prevent the DNR call overhead
on every UDP data transfer call.

This field is a 255-byte character string that is padded with blanks.

Default: None.

ADTRPORT Remote port. Indicates the remote transport layer port on which the incoming
datagram originated. This value is returned to the caller of the RCVFROM
service and may be different for each datagram received.

This field is an unsigned positive integer with a maximum value of 65,534.

Default: None.

ADTRTNCD Return code. Indicates the return code set by the RCVFROM service.

Default: None.

ADTSEP# Number of separator characters for option ADTOPTN1_TYPSP. Not used in the
RCVFROM service.

Default: None

ADTSEP1 First or only spaceport character for option ADTOPTN1_TYPSP. Not used in the
RCVFROM service.

Default: None.

ADTSEP2 Second character or separator sequence for option ADTOPTN1_TYPSP. Not used
in the RCVFROM service.

Default: None

ADTSLCTD Number of tokens selected. Not used by the RCVFROM service.

ADTSRVCE This field is only for downward compatibility purposes and is ignored. This field
is no longer supported in Version 6 of CPT.

Complete Parameter List

8–14 PL/I Programmers Guide

ADTSTATS Specifies logging options for the application program.

ACMSTATS_CONN Specifies that messages be generated on the closing of a
UDP token.

 These messages are generated by the Unicenter
SOLVE:CPT CLOSE service.

ACMSTATS_TERM Specifies that messages be generated on terminating an
established connection.

 These messages are generated by the Unicenter
SOLVE:CPT CLOSE service.

Default: None, no statistics logging.

ADTTIMEO RCVFROM time out value.

Default: None.

ADTTOKEN Data transfer token. Specifies a token that represents a UDP endpoint.

If the ADT is being passed in a call to either the RCVFROM or SENDTO service,
then the token can be zero, indicating to either service, to first create a token
before sending or receiving a datagram. If the token is not zero, then it must be a
token created previously by either the RCVFROM or SENDTO service.

It is not necessary or efficient to create a token every time a CICS transaction calls
the UDP data transfer services. It is an error to pass a TCP token to the UDP data
transfer service routines, RCVFROM and SENDTO. Conversely, it is an error to
pass a UDP token to the TCP data transfer routines, RECEIVE and SEND.

Default: None.

ADTTRACE Note that the tracing functionality has moved in Version 6 of Unicenter
SOLVE:CPT A greatly enhanced tracing capability is now available using the
TCPEEP tracing command. See the Administrator Guide for more detail.

These tracing fields remain only for downward compatibility purposes and are
ignored:

ACMTRAC1_NTRY ACMTRAC1_TERM ACMTRAC2_TPL

ACMTRAC1_ARGS ACMTRAC1_PASS ACMTRAC2_RLSE

ACMTRAC1_RECV ACMTRAC1_CLSE ACMTRAC2_STOR

ACMTRAC1_SEND ACMTRAC1_TERR ACMTRAC2_CLTD

Complete Parameter List

RCVFROM Service 8–15

ADTUCNTX One word of user context. Specifies one arbitrary word of user context to
associate with the endpoint. The information provided is not interpreted by
Unicenter SOLVE:CPT, and is saved with other endpoint information.

Default: Zero, no user context.

ADTVECTR Address of the select vector. Not used by the RCVFROM service.

ADTVERS Required. Version. Indicates the Unicenter SOLVE:CPT version number of the
argument used by the calling program.

Must be set to binary two for this release of Unicenter SOLVE:CPT.

Default: None.

RECEIVE Service 9–1

Chapter

9 RECEIVE Service

Receives data from a peer transport user connected to an endpoint.
The RECEIVE service receives data as input on a connection-mode (TCP)
endpoint only.

To invoke the RECEIVE service, a user application must first build an Argument
for Data Transfer (ADT) and then issue a call to the RECEIVE routine. The ADT
contains the version number, connection token, user buffer address, and length.
When the RECEIVE service completes, the buffer length field is updated to
reflect the amount of data processed by the RECEIVE service.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the RECEIVE service call

■ Receive Methodology Options—Explains the various methods of architecting
your receiving of data, and which ADT options are needed to perform the
type of receive logic

■ Parameter Values Returned in the ADT—Lists the fields that are updated in
the ADT control block upon return from the RECEIVE service call

■ PL/I Structures—Provides a list and information about the distributed
sample PL/I structures that are used by the RECEIVE service call.

■ Sample Programs—Lists and describes the distributed sample PL/I
programs that use the RECEIVE call along with other service calls

■ Completion Information—Describes the expected results at completion of the
RECEIVE service call

■ Return Codes—Lists the return codes that can apply to the RECEIVE service
call

■ Usage Notes—Provides miscellaneous notes about usage of the RECEIVE
service call

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the RECEIVE service call

Call Syntax

9–2 PL/I Programmers Guide

Call Syntax
CALL T09FREC (CPT_ADT)

Receive Methodology Options
Application design drives the selection of a receive methodology. Once you
determine the type, refer to the proper receive methodology type section to find
the recommended parameters and a usage example for each type.

In TCP communications, data is passed in the form of stream data. This data
format is very similar to what the name suggests—it is a stream of data. There is
no logical or physical break in the data for records.

Since stream data format is different than the standard record processing used in
most MVS style processing, Unicenter SOLVE:CPT provides a wealth of
flexibility for easily converting stream data into MVS logical records. In order to
use this functionality, you must code options to tell Unicenter SOLVE:CPT how
to assemble the records for you.

Important! By default, none of this record formatting functionality is enabled. You
must turn it on with options. Otherwise, you will receive a stream of data as it is sent
from the remote.

Terminology and Receive Concepts Used in the Definitions

The following information describes the concepts and terminology used in
RECEIVE service processing.

BLOCKING

Blocking means that the RECEIVE call can wait until the expected data is
received over the ADTTIMEO timeout interval.

From a CICS perspective, a blocking RECEIVE call creates a long running CICS
task. Long running CICS tasks are shunned as a poor programming practice.

NON-BLOCKING

Non-blocking does not wait on a RECEIVE call. The RECEIVE checks for data
and returns back to the caller either with the data or with a CPTWBLCK return
code stating that there is no data available at this time.

The preferred non-blocking method involves integrating RECEIVE calls with the
SELECT tool.

Receive Methodology Options

RECEIVE Service 9–3

SELECT Tool

The SELECT tool can monitor outstanding RECEIVE calls for many CICS
transactions. When the RECEIVE data is available the SELECT tool fires off a
transaction that can issue a RECEIVE call to RECEIVE data for the session.

A SELECT tool RECEIVE can be combined with LL, separator character, or timed
RECEIVE methods.

LL RECEIVE Option

When a caller specifies the LL receive option type, it expects the data stream to
contain a two-byte length field (LL) followed by data bytes. A binary length
contained in the first two positions of the received data stream determines the
length of the expected data record.

LL RECEIVE Example In the following hexadecimal example of a data stream, the two-byte LL header
is in bold:

0008E3C5E2E3D9C5C3F1000AD4E8E3C5E2E3D9C5C3F2

Length Data Record 1 Length Data Record 2

0008 E3C5E2E3D9C5C3F1 000A D4E8E3C5E2E3D9C5C3F2

where:

 0008 LL header value denotes eight bytes of data to follow the
LL characters.

TESTREC1 Actual character data in the first record.

000A LL header value denotes ten bytes of data to follow the LL
characters.

MYTESTREC2 Actual character data in the second record.

Receive Methodology Options

9–4 PL/I Programmers Guide

Separator Character RECEIVE Option

In the separator character receive option type, the end of a record is determined
by finding one or two separator characters.

Note: The data may never contain a natural occurrence of the separator
characters and is a major limitation of the separator character RECEIVE option.

Double Separator
Character Example

In the following hexadecimal example, data stream, uses two separator
characters: CRLF (carriage return) shown in bold:

8E3C5E2E3D9C5C3F10D0AD4E8E3C5E2E3D9C5C3F20D0A

Data Record 1 Separator
Characters

Data Record 2 Separator
Characters

E3C5E2E3D9C5C3F1 0D0A D4E8E3C5E2E3D9C5C3F2 0D0A

where:

TESTREC1 Data in the first record.

0D0A CRLF separates the first from the second data record.

MYTESTREC2 Data in the second record.

0D0A CRLF separates the second and any following records.

Single Separator
Character Example

In the following hexadecimal example data stream, using x'FF' as a separator
character shown in bold:

8E3C5E2E3D9C5C3F1FFD4E8E3C5E2E3D9C5C3F2FF

Data Record 1 Separator
Characters

Data Record 2 Separator
Characters

E3C5E2E3D9C5C3F1 FF D4E8E3C5E2E3D9C5C3F2 FF

where:

TESTREC1 Data in the first record.

0D0A FF separates the first from the second data record.

MYTESTREC2 Data in the second record.

FF Separates the second and any following records.

Receive Methodology Options

RECEIVE Service 9–5

Timed RECEIVE

When a CPT application uses timed RECEIVE calls, it is up to the programmer to
figure out when they have received all their data. The application may have to
issue multiple RECEIVE calls as data may be broken into multiple packets.

Once the RECEIVE call returns it is the programmer's responsibility to analyze
the return codes and ADTBUFFL data length to determine what to do next. This
may include saving any partial packet that was received into the user's data area.

In a partial time RECEIVE call, an endpoint waits until any data is received over
the timeout interval ADTTIMEO.

In a full timeout RECEIVE call, an endpoint waits over the timeout interval of
ADTTIMEO for all the data (as specified by ADTBUFFL) to arrive from the
network.

Introduction to Receive Methodology Options

The following list identifies most of the receive methodologies that can occur.
Review this list to determine which method best fits your design. Then follow
the link to the section to examine recommended ADT options and samples.

Non-Blocking Fixed
Length

The length of the expected data is known. When the RECEIVE is issued with
the no wait option, one of the following should occur under normal
circumstances:

■ The proper amount of data is available and returned to the caller.

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in
the ADTRTNCD field of the ADT. When the wait condition is received, the
caller gives the token over to the SELECT tool, which wakes the
application up when the requested data is available.

Non-Blocking
Variable Length
RECEIVE

The length of the expected data is unknown. The RECEIVE is issued with the
ADTOPTN2_NWAIT no wait option along with a timeout interval ADTTIMEO.
One of the following should occur under normal circumstances:

■ The data is available and returned to the caller

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in
the ADTRTNCD field of the ADT. When the wait condition is received, the
caller gives the token over to the SELECT tool, which wakes the
application up when the requested data is available.

Receive Methodology Options

9–6 PL/I Programmers Guide

Non-Blocking LL A binary length contained in the first two characters of the received data stream
determines the length of the expected data record. When the RECEIVE call is
issued with a no wait option; one of the following should occur under normal
circumstances:
■ The proper amount of data is available and returned to the caller.
■ No data is returned with a will block (CPTWBLCK) reason code (6) set in

the ADTRTNCD field of the ADT. When the wait condition is received, the
caller gives the token over to the SELECT tool, which wakes the
application up when more data is available.

Non-Blocking
Separator Character

The records are determined based on finding one or two separator characters.
See the example in the definitions section. When the RECEIVE call is issued
with a no wait option; one of the following should occur under normal
circumstances:
■ The proper separator characters delimited record is available and returned

to the caller.

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in
the ADTRTNCD field of the ADT. When the wait condition is received, the
caller gives the token over to the SELECT tool, which wakes the
application up when more data is available.

Blocking Fixed Length The length of the expected data is known. The receive waits for all data to be
received or until the ADTTIMEO timeout expires.

Blocking LL A binary length contained in the first two characters of the received data stream
determines the length of the expected data record. This length is then used to
issue a receive that waits until all data is received or an ADTTIMEO timeout
expires.

Blocking Separator
Character

The records are determined based on finding one or two separator characters.
The data is received until the separator characters are found or an ADTTIMEO
timeout expires. Then, the record is given to the RECEIVE caller.

Non-Blocking RECEIVE With this method, the application continuously issues no wait receives holding
the data and looping back to receive more data until the data is exhausted or
the application determines that it has what it needs.

Blocking RECEIVE This is the TCP sockets default of continuously issuing receives, holding the
data and looping back to receive more data until the data is exhausted or the
application determines that it has what it needs.

What makes this a blocking receive call is that the call must receive some data
(or a failure at the transport provider) or control will never be returned to the
caller. This is why in the recommendation below we suggest a timeout.

Any of the previous methodologies have valid uses and we can recommend
them. However, we do not recommend issuing a blocking receive call without a
timeout.

Receive Methodology Options

RECEIVE Service 9–7

Important! You should always set a timeout in the ADTTIMEO field whenever you
issue a blocking receive. Even a non-blocking receive should eventually hit a timeout.

Non-Blocking Fixed Length RECEIVE

The length of the expected data is known. The RECEIVE is issued with a no wait
option. Either the proper amount of data is available and returned to the caller;
or no data is returned with a will block (CPTWBLCK) reason code (6) being set in
the ADTRTNCD field of the ADT. If a wait condition is received, the caller gives
the token over to the SELECT tool, which wakes the application up when the
requested data is available.

Recommended ADT Parameters

The following list contains the recommended parameters to use with the Non-
Blocking Fixed Length RECEIVE methodology. These parameters are set within
the ADT control block; see Error! Reference source not found. for sample
information.

For a complete list of optional parameters, see Complete Parameter List.

Parameters Description

ADTBUFFA Set to address of user data area.

ADTBUFFL Set to expected fixed length record.

ADTOPTN1 Receiving method: set to ADTOPTN1_TMRCV.

ADTOPTN2 Receiving method: set to ADTOPTN2_NWAIT.

ADTTIMEO RECEIVE timeout value, set to reasonable timeout for your
network environment.
Issuing RECEIVE calls with the SELECT tool does not create a
long running transaction. So, it is okay to set the ADTTIMEO to a
value such as one minute.

ADTTOKEN Data transfer token.

ADTVERS Version number should be set to ACMVERSN (binary 2).

Receive Methodology Options

9–8 PL/I Programmers Guide

Sample Program Usage

This partial program shows a method of non-blocking fixed length receiving. A
connection is made and the token is loaded from the ACM and used by all of the
following Unicenter SOLVE:CPT service requests. The length of the expected
data is known, and 345 is moved into the ADTBUFFL field. ADT options are set
to ADTOPTN2_NWAIT and ADTOPTN1_TMRCV for full block receiving
without waiting. Control returns to the program immediately.

The programmer can determine when data is received by checking both the
updated length in the ADTBUFFL field and the ADTRTNCD return code
completion status.

A return code of CPTWTIMO (1) in the ADTRTNCD field indicates the RECEIVE
has timed out in the SELECT tool waiting for data.

The programmer should check the ADTRTNCD for CPTWBLCK (6), which
indicates that the RECEIVE call will block. In the CPTWBLCK case, the program
hands the connect token over to the SELECT tool by:

■ Setting option AFMOPT_SEL

■ Moving the transaction to be kicked off into field AFMNTRAN

■ And then calling the GIVE service as shown in the SELECT WHEN DO
group

Important! When transaction NXTR gets control again from the SELECT tool, the
RECEIVE call must be issued with the exact same options set, otherwise the results are
unpredictable.

Note: Relevant parameters of the example are in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FTAK,T09FREC,T09FGIV,T09FCLO)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (ACMLENG) FIXED BIN (15);
DCL (ACMPTR) POINTER;
DCL 1 CPT_ACM BASED (ACMPTR),
 %INCLUDE T09KPACM;
DCL 1 CPT_ACL,
 %INCLUDE SYSLIB(T09KPACL);
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_AFM,
 %INCLUDE SYSLIB(T09KPAFM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL MESSAGE CHAR (345);
%INCLUDE T09KPCON;
 /*
 Retrieve the ACM control block passed by server with a new
 connection or is it simply the token only of just length=4
 indicating the transaction being initiated from the SELECT tool
 */

Receive Methodology Options

RECEIVE Service 9–9

 EXEC CICS RETRIEVE
 NOHANDLE
 INTO (ACMPTR)
 LENGTH (ACMLENG);

 IF ACMLENG = 4
 THEN AFMTOKEN = SUBSTR(CPT_ACM,1,4); /* from SELECT tool */
 ELSE AFMTOKEN = ACMTOKEN;
 CALL T09FTAK (CPT_AFM); /* TAKE the connection */
 IF AFMRTNCD ^= 0
 THEN DO;
 /* Process and log TAKE error; Terminate transaction */
 END;
 /*
 non-blocking CPT RECEIVE of fixed length
 */
 ADTTOKEN = AFMTOKEN;
 ADTBUFFA = ADDR(MESSAGE); /* point to msg area */
 ADTBUFFL = 345; /* length of data to receive */
 ADTBUFFL = 60; /* receive timeout */
 ADTOPTN1 = ADTOPTN1_TMRCV; /* timed receive */
 ADTOPTN2 = ADTOPTN2_NWAIT; /* No wait - SELECT tool */
 CALL T09FREC (CPT_ADT); /* Call receive */

 SELECT (ADTRTNCD) /* check the results of the receive call */

 WHEN (CPTIRCOK) /* Good RC = 0 */
 DO;
 /* Do normal processing of data record */
 END;
 WHEN (CPTWTIMO) /* receive timeout RC = 1 */
 DO;
 /* Process any data you may have; */
 /* log timeout error; terminate connection */
 END;
 WHEN (CPTWBLCK) /* receive will block RC = 6 */
 DO; /* GIVE to the SELECT tool */
 AFMTOKEN = ADTTOKEN;
 AFMOPTNS = AFMOPT_SEL; /* GIVE to SELECT tool */
 AFMNTRAN = ‘NXTR’; /* next tranID to start */
 CALL T09FGIV (CPT_AFM); /* call GIVE service */
 IF AFMRTNCD ^= 0
 THEN /* Process and log GIVE error */
 END;
 WHEN (CPTERLSE) /* release indication received: TCP FINish bit */
 /* no more data? RC=65 */
 DO;
 /* log error if shutdown not expected */

 /* CPT Orderly Connection Release */
 ACLTOKEN = ADTTOKEN;
 ACLOPTNS = ACLOPT_ORDER;
 CALL T09FCLO (CPT_ACL);
 IF ACLRTNCD ^= 0
 THEN /* Process and log CLOSE error */
 END;
 WHEN (CPTEDISC) /* reset indication received: TCP RST bit */
 DO;
 /* log reset error */
 END;
 OTHERWISE
 DO;
 /* log return and diagnostice codes */
 END;
 END; /* end of select on RC */
 EXEC CICS RETURN;

Receive Methodology Options

9–10 PL/I Programmers Guide

Non-Blocking Variable Length RECEIVE

The length of the expected data is unknown. The RECEIVE is issued with the
ADTOPTN1_NWAIT no wait option along with a timeout interval ADTTIMEO.
One of the following should occur under normal circumstances:

■ The data is available and returned to the caller

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in the
ADTRTNCD field of the ADT. When the wait condition is received, the caller
gives the token over to the SELECT tool, which wakes the application up
when the requested data is available.

Recommended ADT Parameters

The following table lists the recommended parameters for use by the Non-
Blocking Variable Length RECEIVE methodology. These parameters are set
within the ADT control block; see Error! Reference source not found. for sample
information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

ADTBUFFA Set to address of user data area.

ADTBUFFL Set to maximum expected data record size in the ADTBUFFA
field.

ADTOPTN1 Receiving method: set to ADTOPTN1_TMPRT.

ADTOPTN2 Receiving method: set to ADTOPTN2_NWAIT.

ADTTIMEO RECEIVE timeout value, set to reasonable timeout for your
network environment.
Issuing RECEIVE calls with the SELECT tool will not create a
long running transaction. So, it is okay to set the ADTTIMEO
to a value such as one minute.

ADTTOKEN Data transfer token.

ADTVERS Version number should be set to ACMVERSN (binary 2).

Receive Methodology Options

RECEIVE Service 9–11

Sample Program Usage

This partial program shows a method of non-blocking variable length receiving.
A connection is made and the token is loaded from the CPT-ACM and used by
all of the following Unicenter SOLVE:CPT service requests. The length of the
expected data is unknown, and the length of the message buffer is moved into
the ADTBUFFL field. ADT options are set to ADTOPTN2_NWAIT and
ADTOPTN1_TMPRT for partial block receiving without waiting. Control returns
to the program immediately.

The programmer determines if data was received by checking:

■ The updated length in the ADTBUFFL field

■ The return code is to determine RECEIVE service completion status

A return code of CPTWTIMO (1) in the ADTRTNCD field indicates the RECEIVE
has timed out in the SELECT tool waiting for data.

The programmer should check the ADTRTNCD for CPTWBLCK (6), which
indicates that the RECEIVE call will block. In the CPTWBLCK case, the program
hands the connect token over to the SELECT tool by:

■ Setting option AFMOPT_SEL

■ Moving the transaction to kick off into field AFMNTRAN

■ And then calling the GIVE service as shown in the SELECT WHEN DO
group

Important! When transaction NXTR gets control again from the SELECT tool, the
RECEIVE call must be issued with the exact same options set, otherwise the results are
unpredictable.

Note: Relevant parameters of the example are in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FTAK,T09FREC,T09FGIV,T09FCLO)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (ACMLENG) FIXED BIN (15);
DCL (ACMPTR) POINTER;
DCL 1 CPT_ACM BASED (ACMPTR),
 %INCLUDE T09KPACM;
DCL 1 CPT_ACL,
 %INCLUDE SYSLIB(T09KPACL);
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_AFM,
 %INCLUDE SYSLIB(T09KPAFM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL MESSAGE CHAR (1024);
%INCLUDE T09KPCON;
 /*
 Retrieve the ACM control block passed by server with a new
 connection or is it simply the token only of just length=4
 indicating the transaction being initiated from the SELECT tool

Receive Methodology Options

9–12 PL/I Programmers Guide

 */
 EXEC CICS RETRIEVE
 NOHANDLE
 INTO (ACMPTR)
 LENGTH (ACMLENG);

 IF ACMLENG = 4
 THEN AFMTOKEN = SUBSTR(CPT_ACM,1,4); /* from SELECT tool */
 ELSE AFMTOKEN = ACMTOKEN;
 CALL T09FTAK (CPT_AFM); /* TAKE the connection */
 IF AFMRTNCD ^= 0
 THEN DO;
 /* Process and log TAKE error; Terminate transaction */
 END;
 /*
 Non-Blocking Variable Length CPT RECEIVE
 */
 ADTTOKEN = AFMTOKEN;
 ADTBUFFA = ADDR(MESSAGE); /* point to msg area */
 ADTBUFFL = 1024; /* max length of data to receive */
 ADTBUFFL = 60; /* receive timeout */
 ADTOPTN1 = ADTOPTN1_TMPRT; /* timed partial receive */
 ADTOPTN2 = ADTOPTN2_NWAIT; /* No wait - SELECT tool */
 CALL T09FREC (CPT_ADT); /* Call receive */

 SELECT (ADTRTNCD) /* check the results of the receive call */

 WHEN (CPTIRCOK) /* Good RC = 0 */
 DO;
 /* Do normal processing of data record */
 END;
 WHEN (CPTWTIMO) /* receive timeout RC = 1 */
 DO;
 /* Process any data you may have; */
 /* log timeout error; terminate connection */
 END;
 WHEN (CPTWBLCK) /* receive will block RC = 6 */
 DO; /* GIVE to the SELECT tool */
 AFMTOKEN = ADTTOKEN;
 AFMOPTNS = AFMOPT_SEL; /* GIVE to SELECT tool */
 AFMNTRAN = ‘NXTR’; /* next tranID to start */
 CALL T09FGIV (CPT_AFM); /* call GIVE service */
 IF AFMRTNCD ^= 0
 THEN /* Process and log GIVE error */
 END;
 WHEN (CPTERLSE) /* release indication received: TCP FINish bit */
 /* no more data? RC=65 */
 DO;
 /* log error if shutdown not expected */

 /* CPT Orderly Connection Release */
 ACLTOKEN = ADTTOKEN;
 ACLOPTNS = ACLOPT_ORDER;
 CALL T09FCLO (CPT_ACL);
 IF ACLRTNCD ^= 0
 THEN /* Process and log CLOSE error */
 END;
 WHEN (CPTEDISC) /* reset indication received: TCP RST bit */
 DO;
 /* log reset error */
 END;

Receive Methodology Options

RECEIVE Service 9–13

 OTHERWISE
 DO;
 /* log return and diagnostice codes */
 END;
 END; /* end of select on RC */

EXEC CICS RETURN;

Non-Blocking LL RECEIVE

A binary length contained in the first two characters of the received data stream
determines the length of the expected data record. See the example in LL
RECEIVE Option. When the RECEIVE call is issued with a no wait option, one of
the following should occur under normal circumstances:

■ The proper amount of data is available and returned to the caller.

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in the
ADTRTNCD field of the ADT. When the wait condition is received, the caller
gives the token over to the SELECT tool, which wakes the application up
when more data is available.

Recommended ADT Parameters

The following list contains the recommended parameters for use by the Non-
Blocking LL RECEIVE methodology. These parameters are set within the ADT
control block; see Error! Reference source not found. for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

ADTBUFFA Set to address of user data area.

ADTBUFFL Set to the maximum expected length of any record.

ADTOPTN1 Receiving method: set to ADTOPTN1_TYPLL.

ADTOPTN2 Receiving method: set to ADTOPTN2_NWAIT.

ADTTIMEO RECEIVE timeout value, set to reasonable timeout for your
network environment.
Issuing RECEIVE calls with the SELECT tool does not create a
long running transaction. So, it is okay to set the ADTTIMEO to a
value such as one minute.

ADTTOKEN Data transfer token.

ADTVERS Version number should be set to ACMVERSN (binary 2).

Receive Methodology Options

9–14 PL/I Programmers Guide

Sample Program Usage

This partial program shows a method of receiving records based on the first two
bytes containing the length of the record.

A connection is made and the token is loaded from the CPT-ACM and used by
all of the following Unicenter SOLVE:CPT service requests. The maximum length
of the expected data record of 1024 is moved into the ADTBUFFL field. ADT
options are set to ADTOPTN2_NWAIT and ADTOPTN1_TYPLL for imbedded
length separator type receiving without waiting. Control is return to the program
immediately.

The programmer determines if data was received by checking:

■ The updated length in the ADTBUFFL field

■ The return code is to determine RECEIVE service completion status

A return code of CPTWTIMO (1) in the ADTRTNCD field indicates the RECEIVE
timed out in the SELECT tool waiting for data.

The programmer should check the ADTRTNCD for CPTWBLCK (6), which
indicates that the RECEIVE call will block. In the CPTWBLCK case, the program
hands the connect token over to the SELECT tool by:

■ Setting option AFMOPT_SEL

■ Moving the transaction to be kicked off into field AFMNTRAN

■ And then calling the GIVE service as shown in the SELECT WHEN DO
group

Important! When transaction NXTR gets control again from the SELECT tool, the
RECEIVE call must be issued with the exact same options set, otherwise the results are
unpredictable.

Note: Relevant parameters of the example are in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FTAK,T09FREC,T09FGIV,T09FCLO)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (ACMLENG) FIXED BIN (15);
DCL (ACMPTR) POINTER;
DCL 1 CPT_ACM BASED (ACMPTR),
 %INCLUDE T09KPACM;
DCL 1 CPT_ACL,
 %INCLUDE SYSLIB(T09KPACL);
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_AFM,
 %INCLUDE SYSLIB(T09KPAFM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL MESSAGE CHAR (1024);
%INCLUDE T09KPCON;

Receive Methodology Options

RECEIVE Service 9–15

 /*
 Retrieve the ACM control block passed by server with a new
 connection or is it simply the token only of just length=4
 indicating the transaction being initiated from the SELECT tool
 */
 EXEC CICS RETRIEVE
 NOHANDLE
 INTO (ACMPTR)
 LENGTH (ACMLENG);

 IF ACMLENG = 4
 THEN AFMTOKEN = SUBSTR(CPT_ACM,1,4); /* from SELECT tool */
 ELSE AFMTOKEN = ACMTOKEN;
 CALL T09FTAK (CPT_AFM); /* TAKE the connection */
 IF AFMRTNCD ^= 0
 THEN DO;
 /* Process and log TAKE error; Terminate transaction */
 END;
 /*
 Non-Blocking LL CPT RECEIVE
 */
 ADTTOKEN = AFMTOKEN;
 ADTBUFFA = ADDR(MESSAGE); /* point to msg area */
 ADTBUFFL = 1024; /* max length of data to receive */
 ADTBUFFL = 60; /* receive timeout */
 ADTOPTN1 = ADTOPTN1_TYPLL; /* LL deliniated receives */
 ADTOPTN2 = ADTOPTN2_NWAIT; /* No wait - SELECT tool */
 CALL T09FREC (CPT_ADT); /* Call receive */

 SELECT (ADTRTNCD) /* check the results of the receive call */

 WHEN (CPTIRCOK) /* Good RC = 0 */
 DO;
 /* Do normal processing of data record */
 END;
 WHEN (CPTWTIMO) /* receive timeout RC = 1 */
 DO;
 /* Process any data you may have; */
 /* log timeout error; terminate connection */
 END;
 WHEN (CPTWBLCK) /* receive will block RC = 6 */
 DO; /* GIVE to the SELECT tool */
 AFMTOKEN = ADTTOKEN;
 AFMOPTNS = AFMOPT_SEL; /* GIVE to SELECT tool */
 AFMNTRAN = ‘NXTR’; /* next tranID to start */
 CALL T09FGIV (CPT_AFM); /* call GIVE service */
 IF AFMRTNCD ^= 0
 THEN /* Process and log GIVE error */
 END;
 WHEN (CPTERLSE) /* release indication received: TCP FINish bit */
 /* no more data? RC=65 */
 DO;
 /* log error if shutdown not expected */

 /* CPT Orderly Connection Release */
 ACLTOKEN = ADTTOKEN;
 ACLOPTNS = ACLOPT_ORDER;
 CALL T09FCLO (CPT_ACL);
 IF ACLRTNCD ^= 0
 THEN /* Process and log CLOSE error */
 END;
 WHEN (CPTEDISC) /* reset indication received: TCP RST bit */
 DO;
 /* log reset error */
 END;

Receive Methodology Options

9–16 PL/I Programmers Guide

 OTHERWISE
 DO;
 /* log return and diagnostice codes */
 END;
 END; /* end of select on RC */

 EXEC CICS RETURN;

Non-Blocking Separator Character RECEIVE

The records are determined based on finding one or two separator characters.
See the example in Separator Character RECEIVE Option section. When the
RECEIVE call is issued with a no wait option, one of the following should occur
under normal circumstances:

■ The proper separator characters delimited record is available and returned to
the caller.

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in the
ADTRTNCD field of the ADT. When the wait condition is received, the caller
gives the token over to the SELECT tool, which wakes the application up
when more data is available.

Recommended ADT Parameters

The following table lists the recommended parameters for use by the Non-
Blocking Separator Character RECEIVE methodology. These parameters are set
within the ADT control block; see Error! Reference source not found. for sample
information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

ADTBUFFA Set to address of user data area.

ADTBUFFL Set to the maximum expected length of any record.

ADTOPTN1 Receiving method: set to ADTOPTN1_TYPSP.

ADTOPTN2 Receiving method: set to ADTOPTN2_NWAIT.

ADTSEP# Set to 1 or 2 for the number of separator characters.

ADTSEP1 First or only separator character.

ADTSEP2 Second separator character in a sequence of two.

Receive Methodology Options

RECEIVE Service 9–17

Parameter Description

ADTTIMEO RECEIVE timeout value, set to reasonable timeout for your
network environment.
Issuing RECEIVE calls with the SELECT tool does not create a
long running transaction. So, it is okay to set the ADTTIMEO to a
value such as one minute.

ADTTOKEN Data transfer token.

ADTVERS Version number should be set to ACMVERSN (binary 2).

Sample Program Usage

This partial program shows a method of non-blocking separator character
delineated receive. The records are determined based on finding one or two
separator characters.

A connection is made and the token is loaded from the ACM and used by all of
the following Unicenter SOLVE:CPT service requests. The maximum length of
the expected data of 1024 is moved into the ADTBUFFL field. ADT options are
set to ADTOPTN2_NWAIT and ADTOPTN1_TYPSP for separator character
delimiters with no waiting. Control returns to the program immediately.

The programmer will:

■ Determine if data was received by checking the updated length in the
ADTBUFFL field

■ Check that the return code is to determine RECEIVE service completion
status

A return code of CPTWTIMO (1) in the ADTRTNCD field indicates the RECEIVE
timed out in the SELECT tool waiting for data.

The programmer should check the ADTRTNCD for CPTWBLCK (6), which
indicates that the RECEIVE call will block. In the CPTWBLCK case, the program
hands the connect token over to the SELECT tool by:

■ Setting option AFMOPT_SEL

■ Moving the transaction to be kicked off into field AFMNTRAN

■ And then calling the GIVE service as shown in the SELECT WHEN DO
group

Important! When transaction NXTR gets control again from the SELECT tool, the
RECEIVE call must be issued with the exact same options set, otherwise the results are
unpredictable.

Receive Methodology Options

9–18 PL/I Programmers Guide

Note: Relevant parameters of the example are in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FTAK,T09FREC,T09FGIV,T09FCLO)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (ACMLENG) FIXED BIN (15);
DCL (ACMPTR) POINTER;
DCL 1 CPT_ACM BASED (ACMPTR),
 %INCLUDE T09KPACM;
DCL 1 CPT_ACL,
 %INCLUDE SYSLIB(T09KPACL);
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_AFM,
 %INCLUDE SYSLIB(T09KPAFM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL MESSAGE CHAR (1024);
%INCLUDE T09KPCON;
 /*
 Retrieve the ACM control block passed by server with a new
 connection or is it simply the token only of just length=4
 indicating the transaction being initiated from the SELECT tool
 */
 EXEC CICS RETRIEVE
 NOHANDLE
 INTO (ACMPTR)
 LENGTH (ACMLENG);

 IF ACMLENG = 4
 THEN AFMTOKEN = SUBSTR(CPT_ACM,1,4); /* from SELECT tool */
 ELSE AFMTOKEN = ACMTOKEN;
 CALL T09FTAK (CPT_AFM); /* TAKE the connection */
 IF AFMRTNCD ^= 0
 THEN DO;
 /* Process and log TAKE error; Terminate transaction */
 END;
 /*
 Non-Blocking Separator Character CPT RECEIVE
 */
 ADTTOKEN = AFMTOKEN;
 ADTBUFFA = ADDR(MESSAGE); /* point to msg area */
 ADTBUFFL = 1024; /* max length of data to receive */
 ADTBUFFL = 60; /* receive timeout */
 ADTSEP# = 2; /* number of separator characters */
 ADTSEP1 = ‘0D’X; /* 1st sep.char: carriage return */
 ADTSEP2 = ‘0A’X; /* 2nd sep.char: line feed */
 ADTOPTN1 = ADTOPTN1_TYPSP; /* separator character deliniated */
 ADTOPTN2 = ADTOPTN2_NWAIT; /* No wait - SELECT tool */
 CALL T09FREC (CPT_ADT); /* Call receive */

 SELECT (ADTRTNCD) /* check the results of the receive call */

 WHEN (CPTIRCOK) /* Good RC = 0 */
 DO;
 /* Do normal processing of data record */
 END;
 WHEN (CPTWTIMO) /* receive timeout RC = 1 */
 DO;
 /* Process any data you may have; */
 /* log timeout error; terminate connection */
 END;

Receive Methodology Options

RECEIVE Service 9–19

 WHEN (CPTWBLCK) /* receive will block RC = 6 */
 DO; /* GIVE to the SELECT tool */
 AFMTOKEN = ADTTOKEN;
 AFMOPTNS = AFMOPT_SEL; /* GIVE to SELECT tool */
 AFMNTRAN = ‘NXTR’; /* next tranID to start */
 CALL T09FGIV (CPT_AFM); /* call GIVE service */
 IF AFMRTNCD ^= 0
 THEN /* Process and log GIVE error */
 END;
 WHEN (CPTERLSE) /* release indication received: TCP FINish bit */
 /* no more data? RC=65 */
 DO;
 /* log error if shutdown not expected */

 /* CPT Orderly Connection Release */
 ACLTOKEN = ADTTOKEN;
 ACLOPTNS = ACLOPT_ORDER;
 CALL T09FCLO (CPT_ACL);
 IF ACLRTNCD ^= 0
 THEN /* Process and log CLOSE error */
 END;
 WHEN (CPTEDISC) /* reset indication received: TCP RST bit */
 DO;
 /* log reset error */
 END;
 OTHERWISE
 DO;
 /* log return and diagnostice codes */
 END;
 END; /* end of select on RC */

 EXEC CICS RETURN;

Receive Methodology Options

9–20 PL/I Programmers Guide

Blocking Fixed Length RECEIVE
The length of the expected data is known and the receive waits until all data is
received or the ADTTIMEO timeout expires.

Recommended ADT Parameters

The following table lists the recommended parameters for use by the Blocking
Fixed Length RECEIVE methodology. These parameters are set within the ADT
control block; see Error! Reference source not found. for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

ADTBUFFA Set to address of user data area.

ADTBUFFL Set to expected fixed length record.

ADTOPTN1 Receiving method: set to ADTOPTN1_TMRCV.

ADTTIMEO RECEIVE timeout value, set to reasonable timeout for your
network environment.

ADTTOKEN Data transfer token.

ADTVERS Version number should be set to ACMVERSN (binary 2).

Sample Program Usage

This partial program shows a method of receiving fixed length records while
blocking the connection. A connection is made and the token is loaded from the
ACM and used by all of the following Unicenter SOLVE:CPT service requests.
The length of the expected data is known, and 345 is moved into the ADTBUFFL
field. ADTOPTN1 is set to ADTOPTN1_TMRCV for full block receiving.

The receive waits until all data is received or the ADTTIMEO timeout expires.
The ADTRTNCD return code is checked to determine RECEIVE service
completion status.

Note: Relevant parameters of the example are in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FREC,T09FCLO)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ACL,
 %INCLUDE SYSLIB(T09KPACL);
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL MESSAGE CHAR (345);
%INCLUDE T09KPCON;

Receive Methodology Options

RECEIVE Service 9–21

/* CPT connection processing …………… */

 /*
 Blocking Fixed Length CPT RECEIVE
 */
 ADTTOKEN = ACMTOKEN;
 ADTBUFFA = ADDR(MESSAGE); /* point to msg area */
 ADTBUFFL = 345; /* length of data expected */
 ADTBUFFL = 5; /* receive timeout */
 ADTOPTN1 = ADTOPTN1_TMRCV; /* Timed receive */
 CALL T09FREC (CPT_ADT); /* Call receive */

 SELECT (ADTRTNCD) /* check the results of the receive call */

 WHEN (CPTIRCOK) /* Good RC = 0 */
 DO;
 /* Do normal processing of data record */
 END;
 WHEN (CPTWTIMO) /* receive timeout RC = 1 */
 DO;
 /* Process any data you may have; */
 /* log timeout error; terminate connection */
 END;
 WHEN (CPTERLSE) /* release indication received: TCP FINish bit */
 /* no more data? RC=65 */
 DO;
 /* log error if shutdown not expected */

 /* CPT Orderly Connection Release */
 ACLTOKEN = ADTTOKEN;
 ACLOPTNS = ACLOPT_ORDER;
 CALL T09FCLO (CPT_ACL);
 IF ACLRTNCD ^= 0
 THEN /* Process and log CLOSE error */
 END;
 WHEN (CPTEDISC) /* reset indication received: TCP RST bit */
 DO;
 /* log reset error */
 END;
 OTHERWISE
 DO;
 /* log return and diagnostice codes */
 END;
 END; /* end of select on RC */

 EXEC CICS RETURN;

Receive Methodology Options

9–22 PL/I Programmers Guide

Blocking LL RECEIVE

A binary length, LL, contained in the first two characters of the received data
stream determines the length of the expected data record. See example in LL
RECEIVE Option. The LL length is used on a RECEIVE call which waits until all
data has been received or the ADTTIMEO timeout expires.

Recommended ADT Parameters

The following table lists the recommended parameters for use by the Blocking LL
RECEIVE methodology. These parameters are set within the ADT control block;
see Error! Reference source not found. for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

ADTBUFFA Set to address of user data area.

ADTBUFFL Set to maximum expected length of any record.

ADTOPTN1 Receiving method: set to ADTOPTN1_TYPLL.

ADTTIMEO RECEIVE timeout value, set to reasonable timeout for your
network environment.

ADTTOKEN Data transfer token.

ADTVERS Version number should be set to ACMVERSN (binary 2).

Sample Program Usage

The following partial program shows a method of receiving records based on the
first two bytes containing the length of the record. A connection is made and
the token is loaded from the ACM and used by all of the following Unicenter
SOLVE:CPT service requests. The maximum length of the expected data record
of 1024 is moved into the ADTBUFFL field. ADTOPTN1 is set to
ADTOPTN1_TYPLL for imbedded length separator type receiving. The binary
length contained in the first two characters of the received data stream
determines the length of the expected data.

Receive Methodology Options

RECEIVE Service 9–23

The receive waits until all data is received or a ADTTIMEO timeout expires. The
return code is checked to determine RECEIVE service completion status.

Note: Relevant parameters of the example are in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FREC,T09FCLO)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ACL,
 %INCLUDE SYSLIB(T09KPACL);
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL MESSAGE CHAR (1024);
%INCLUDE T09KPCON;

/* CPT connection processing …………… */

 /*
 Blocking LL CPT RECEIVE
 */
 ADTTOKEN = ACMTOKEN;
 ADTBUFFA = ADDR(MESSAGE); /* point to msg area */
 ADTBUFFL = 1024; /* max length of data to receive */
 ADTBUFFL = 5; /* receive timeout */
 ADTOPTN1 = ADTOPTN1_TYPLL; /* separator character deliniated */
 CALL T09FREC (CPT_ADT); /* Call receive */

 SELECT (ADTRTNCD) /* check the results of the receive call */

 WHEN (CPTIRCOK) /* Good RC = 0 */
 DO;
 /* Do normal processing of data record */
 END;
 WHEN (CPTWTIMO) /* receive timeout RC = 1 */
 DO;
 /* Process any data you may have; */
 /* log timeout error; terminate connection */
 END;
 WHEN (CPTERLSE) /* release indication received: TCP FINish bit */
 /* no more data? RC=65 */
 DO;
 /* log error if shutdown not expected */

 /* CPT Orderly Connection Release */
 ACLTOKEN = ADTTOKEN;
 ACLOPTNS = ACLOPT_ORDER;
 CALL T09FCLO (CPT_ACL);
 IF ACLRTNCD ^= 0
 THEN /* Process and log CLOSE error */
 END;
 WHEN (CPTEDISC) /* reset indication received: TCP RST bit */
 DO;
 /* log reset error */
 END;
 OTHERWISE
 DO;
 /* log return and diagnostice codes */
 END;
 END; /* end of select on RC */

 EXEC CICS RETURN;

Receive Methodology Options

9–24 PL/I Programmers Guide

Blocking Separator Character RECEIVE

The records are determined based on finding one or two separator characters.
See the example in Separator Character RECEIVE Option section. The data is
received until the separator characters are found, and then the record is given to
the RECEIVE caller or the ADTTIMEO timeout expires.

Recommended ADT Parameters

The following table lists the recommended parameters for use by the Blocking
Separator Character RECEIVE methodology. These parameters are set within the
ADT control block; see Error! Reference source not found. for sample
information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

ADTBUFFA Set to address of user data area.

ADTBUFFL Set to the maximum expected length of any record.

ADTOPTN1 Receiving method: set to ADTOPTN1_TYPSP.

ADTSEP1 First or only separator character.

ADTSEP2 Second separator character in a sequence of two.

ADTSEP# Set to 1 or 2 for the number of separator characters.

ADTTIMEO RECEIVE timeout value, set to reasonable timeout for your
network environment.

ADTTOKEN Data transfer token.

ADTVERS Version number should be set to ACMVERSN (binary 2).

Receive Methodology Options

RECEIVE Service 9–25

Sample Program Usage

This partial program shows a method of implementing the Blocked Separator
Character RECEIVE. The records are determined based on finding one or two
separator characters.

A connection is made and the token is loaded from the ACM and used by all of
the following Unicenter SOLVE:CPT service requests. The maximum length of
the expected data of 1024 is moved into the ADTBUFFL field. ADTOPTN1 is set
to ADTOPTN1_TYPSP for separator character delimiters.

The Blocked Separator Character RECEIVE waits up to the ADTTIMEO
expiration for all the data to be received. The ADTRTNCD return code is checked
to determine RECEIVE service completion status.

Note: Relevant parameters of the example are in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FREC,T09FCLO)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ACL,
 %INCLUDE SYSLIB(T09KPACL);
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL MESSAGE CHAR (1024);
%INCLUDE T09KPCON;

/* CPT connection processing …………… */

 /*
 Blocking Separator Character CPT RECEIVE
 */
 ADTTOKEN = ACMTOKEN;
 ADTBUFFA = ADDR(MESSAGE); /* point to msg area */
 ADTBUFFL = 1024; /* max length of data to receive */
 ADTBUFFL = 5; /* receive timeout */
 ADTSEP# = 2; /* number of separator characters */
 ADTSEP1 = ‘0D’X; /* 1st sep.char: carriage return */
 ADTSEP2 = ‘0A’X; /* 2nd sep.char: line feed */
 ADTOPTN1 = ADTOPTN1_TYPSP; /* separator character deliniated */
 CALL T09FREC (CPT_ADT); /* Call receive */

 SELECT (ADTRTNCD) /* check the results of the receive call */

 WHEN (CPTIRCOK) /* Good RC = 0 */
 DO;
 /* Do normal processing of data record */
 END;
 WHEN (CPTWTIMO) /* receive timeout RC = 1 */
 DO;
 /* Process any data you may have; */
 /* log timeout error; terminate connection */
 END;
 WHEN (CPTERLSE) /* release indication received: TCP FINish bit */
 /* no more data? RC=65 */

Receive Methodology Options

9–26 PL/I Programmers Guide

 DO;
 /* log error if shutdown not expected */

 /* CPT Orderly Connection Release */
 ACLTOKEN = ADTTOKEN;
 ACLOPTNS = ACLOPT_ORDER;
 CALL T09FCLO (CPT_ACL);
 IF ACLRTNCD ^= 0
 THEN /* Process and log CLOSE error */
 END;
 WHEN (CPTEDISC) /* reset indication received: TCP RST bit */
 DO;
 /* log reset error */
 END;
 OTHERWISE
 DO;
 /* log return and diagnostice codes */
 END;
 END; /* end of select on RC */

 EXEC CICS RETURN;

Non-Blocking RECEIVE

In this method, the application continuously issues no wait RECEIVE calls
holding the data and looping back to receive more data until the data is
exhausted or the application determines that it has what it needs.

Recommended ADT Parameters

The following table lists the recommended parameters for use by the Non-
Blocking Receive Loop methodology. These parameters are set within the ADT
control block; see Error! Reference source not found. for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

ADTBUFFA Set to address of user data area.

ADTBUFFL Set to expected maximum length of record.

ADTOPTN1 Receiving method: set to ADTOPTN1_NBLKR.

ADTTOKEN Data transfer token.

ADTVERS Version number should be set to ACMVERSN (binary 2).

Receive Methodology Options

RECEIVE Service 9–27

Sample Program Usage

This partial program shows an older non-blocking receive method. This is a
polling method to check to see if any data is at the endpoint.

 A connection is made and the token is loaded from the CPT-ACM and used by
all of the following Unicenter SOLVE:CPT service requests. The maximum length
of the expected data of 1024 is moved into the ADTBUFFL field. ADTOPTN1 is
set to ADTOPTN1_NBLKR for standard sockets in a non-blocking receive mode.

The RECEIVE service always returns control back to the caller. If no data is
available, then return code CPTWBLCK (6) is returned in the ADTRTNCD field
of the ADT. The return code is checked to determine RECEIVE service
completion status. At this point, it is the programmer’s responsibility to check
the ADTBUFFL to determine if any data was received and how to process it

Note: Relevant parameters of the example are in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FREC,T09FCLO)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ACL,
 %INCLUDE SYSLIB(T09KPACL);
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL MESSAGE CHAR (1024);
%INCLUDE T09KPCON;

/* CPT connection processing …………… */

 /*
 Non-Blocking CPT RECEIVE
 */
 ADTTOKEN = ACMTOKEN;
 ADTBUFFA = ADDR(MESSAGE); /* point to msg area */
 ADTBUFFL = 1024; /* max length of data to receive */
 ADTOPTN1 = ADTOPTN1_NBLKR; /* do not block on receive */
 CALL T09FREC (CPT_ADT); /* Call receive */

 SELECT (ADTRTNCD) /* check the results of the receive call */

 WHEN (CPTIRCOK) /* Good RC = 0 */
 DO;
 /* Do normal processing of data record */
 END;
 WHEN (CPTWBLCK) /* receive will block RC = 6 */
 DO; /* GIVE to the SELECT tool */
 /* Process any data you may have?; */
 /* log will block error?; terminate connection? */
 END;
 WHEN (CPTERLSE) /* release indication received: TCP FINish bit */
 /* no more data? RC=65 */
 DO;
 /* log error if shutdown not expected */

 /* CPT Orderly Connection Release */
 ACLTOKEN = ADTTOKEN;
 ACLOPTNS = ACLOPT_ORDER;
 CALL T09FCLO (CPT_ACL);

Receive Methodology Options

9–28 PL/I Programmers Guide

 IF ACLRTNCD ^= 0
 THEN /* Process and log CLOSE error */
 END;
 WHEN (CPTEDISC) /* reset indication received: TCP RST bit */
 DO;
 /* log reset error */
 END;
 OTHERWISE
 DO;
 /* log return and diagnostice codes */
 END;
 END; /* end of select on RC */

 EXEC CICS RETURN;

Blocking RECEIVE

RECEIVE is called for data. The RECEIVE call can become a long running task
waiting for network data to arrive.

What makes this a blocking receive call is that the call must receive some data (or
a failure at the transport provider) or control is never return to the caller. That is
why in the recommendation below we suggest a timeout.

Recommended ADT Parameters

The following table lists the recommended parameters for use by the Blocking
Receive Loop methodology. These parameters are set within the ADT control
block; see Error! Reference source not found. for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

ADTBUFFA Set to address of user data area.

ADTBUFFL Set to maximum expected length of record.

ADTOPTN1 Receiving method: set to ADTOPTN1_TMPRT.

ADTTIMEO RECEIVE timeout value, set to reasonable timeout for your
network environment.

ADTTOKEN Data transfer token.

ADTVERS Version number should be set to ACMVERSN (binary 2).

Receive Methodology Options

RECEIVE Service 9–29

Sample Program Usage

This partial program shows a blocking receive. A connection is made and
the token is loaded from the ACM and used by all of the following Unicenter
SOLVE:CPT service requests. The maximum length of the expected data of 1024
is moved into the ADTBUFFL field. ADTOPTN1 is set to ADTOPTN1_TMPRT.

The RECEIVE service returns control back to the caller:

■ Any time data is available

■ The transport provider detects an error

■ An ADTTIMEO timeout expires

The return code is checked to determine RECEIVE service completion status. At
this point, it is the programmer’s responsibility to check the ADTBUFFL to
determine if any data was received and how to process it.

Note: Relevant parameters of the example are in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FREC,T09FCLO)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ACL,
 %INCLUDE SYSLIB(T09KPACL);
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL MESSAGE CHAR (1024);
%INCLUDE T09KPCON;

/* CPT connection processing …………… */

 /*
 Blocking CPT RECEIVE
 */
 ADTTOKEN = ACMTOKEN;
 ADTBUFFA = ADDR(MESSAGE); /* point to msg area */
 ADTBUFFL = 1024; /* max length of data to receive */
 ADTBUFFL = 5; /* receive timeout */
 ADTOPTN1 = ADTOPTN1_TMPRT; /* time partial receive */
 CALL T09FREC (CPT_ADT); /* Call receive */

 SELECT (ADTRTNCD) /* check the results of the receive call */

 WHEN (CPTIRCOK) /* Good RC = 0 */
 DO;
 /* Do normal processing of data record */
 END;
 WHEN (CPTWTIMO) /* receive timeout RC = 1 */
 DO;
 /* Process any data you may have; */
 /* log timeout error; terminate connection */
 END;

Receive Methodology Options

9–30 PL/I Programmers Guide

 WHEN (CPTERLSE) /* release indication received: TCP FINish bit */
 /* no more data? RC=65 */
 DO;
 /* log error if shutdown not expected */

 /* CPT Orderly Connection Release */
 ACLTOKEN = ADTTOKEN;
 ACLOPTNS = ACLOPT_ORDER;
 CALL T09FCLO (CPT_ACL);
 IF ACLRTNCD ^= 0
 THEN /* Process and log CLOSE error */
 END;
 WHEN (CPTEDISC) /* reset indication received: TCP RST bit */
 DO;
 /* log reset error */
 END;
 OTHERWISE
 DO;
 /* log return and diagnostice codes */
 END;
 END; /* end of select on RC */

 EXEC CICS RETURN;

Parameter Values Returned in the ADT

RECEIVE Service 9–31

Parameter Values Returned in the ADT
After the RECEIVE call returns control to your application program, the
following fields are propagated with valid information. These updated values
are passed back to the application in the ADT control block.

Parameter Description

ADTBUFFA Data buffer filled with data from the network.

ADTBUFFL Length of the data that was actually received.

ADTDGNCD Diagnostic code.

ADTRTNCD Return code.

PL/I Structures
Sample PL/I structures are provided in the distributed software and are
available to you in cpthlq.T09MAC. Variable field names contained in the
distributed samples and the examples in this guide refer to these structures.

T09KPADT PL/I structure name for the ADT. For detailed information
and a sample copy of the PL/I structure, see the ADT:
Argument for Data Transfer Used by RECIEVE, SEND,
RECVFROM, and SENDTO Services Service section in
appendix “Control Block Layouts.”
Note: An excerpt of the PL/I constants that apply to ADT
calls immediately follows the ADT in the appendix.

T09KPCON The PL/I structure name for PL/I constants that apply to
the various service calls. For detailed information and a
sample copy of the PL/I copybook see T09KPCON: PL/I
Call Constants Copybook section of the appendix “Control
Block Layouts”

Sample Programs

9–32 PL/I Programmers Guide

Sample Programs
Sample PL/I source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PPCL1 Client Application sends typed in data to the server waiting for the
information to be echoed back from the server.

T09PPCL2 Client Application to send an internal message using either the
FULL, SEP or LL to be echoed back by the server.

T09PPSV1 TCP Server 1 program is a single-threaded server using a Listen
API call.

T09PPSV2 TCP Server 2 program is a multithreaded server using the Listen
tool.

Completion Information
The RECEIVE service completes normally when the data is moved from the
transport provider buffer to the application program’s storage area. A length is
returned to the application program, which is set to the amount of data actually
processed.

Normal completion of the RECEIVE service implies that data has been moved to
the user buffer. This does not necessarily indicate the application request was
completely satisfied, but that some amount of data was processed. The user
application is required to load the ADTBUFFL field to determine the actual data
received. The RECEIVE service returns control to the calling application on
receipt of a full buffer, a partial buffer, or an error indication, unless overridden
with selected ADT options. Control is returned to the user application with a
partial buffer to avoid a WAIT command within the RECEIVE service.
Additional requests to the RECEIVE service may be required to completely
satisfy the user application’s requirement, unless overridden with selected ADT
options.

In the case of specifying a LL or separator type RECEIVE, completion will not
occur until all the data of length LL (for LL receive), the separators have been
found (for separator receive), or a timeout occurs. This may cause the transaction
to wait within the RECEIVE service unless the ADTOPTN2_NWAIT option is
used.

Return Codes

RECEIVE Service 9–33

The presence of exceptions or error conditions does not always indicate serious
errors. A user application should check the return code to determine proper flow
control. The release indication return code is an example of a condition that is not
necessarily a serious error. This exception specifies that the remote host closed its
half of the full-duplex data connection and will not send any additional data.
This return code is acceptable, and generally indicates that graceful termination
of the connection should begin.

On normal return to the application program, the general return code in
ADTRTNCD is set to zero (CPTIRCOK). The diagnostic code in ADTDGNCD is
always zero. The length field (ADTBUFFL) indicates the amount of data
processed.

If the RECEIVE service completes abnormally, some or no user data may have
been sent to the peer transport user. The general return code and the diagnostic
code indicate the nature of the failure. The diagnostic code generally contains a
specific code that is generated by the transport provider.

Return Codes
The RECEIVE service returns codes indicating the results of the execution. These
values are in the ADTRTNCD (R15) and ADTDGNCD (R0).

Sample PL/I structure T09KPRCS is provided in data set cpthlq.T09MAC. It
details the variable field names contained in the distributed samples and the
examples in this guide. See the appendix “Return Codes” for a sample copy of
the T09KPRCS structure. A description of the problem causing the associated
return code is contained in this structure.

The following table lists the return codes that can apply to the RECEIVE call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed
successfully.

1 1 No CPTWTIMO Timed receive call timed
out.

6 6 Yes CPTWBLCK Non-blocking call to the
REVEIVE service detected
a wait condition.

17 11 No CPTEVRSN Control block version
number not supported.

Return Codes

9–34 PL/I Programmers Guide

Decimal Hex Diagnostic
Code

Variable Description

20 14 No CPTETOKN Specified data transfer
token is invalid.

21 15 No CPTEBUFF Buffer address or length
invalid.

27 1B No CPTETIME Receive timeout value not
specified.

31 1F No CPTEFRMT Other Socket Call
Parameter List format or
specification error.

34 22 No CPTENAPI API not fully available;
retry.

40 28 Yes CPTETERM TCPIP is terminating.

7 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not
available or aborted.

79 4F Yes CPTEINTG Other transport layer
connection/data
integrity error.

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination.
The diagnostic code is
the abnormal termination
code, which is normally a
CICS abend code, but can
also be in the “Abend
Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

Usage Notes

RECEIVE Service 9–35

Usage Notes
The RECEIVE service receives normal data inputs through a Unicenter
SOLVE:CPT connection. The data may be part of a byte stream being received
over a connection (TCP).

If the transport service type or protocol selected is a connection-mode byte
stream (TCP), data is moved from the transport provider’s storage area to the
user application’s storage area. Stream data may not be received with the same
logical boundaries with which it was sent. However, the data arrives in the
precise order in which it was sent. Possible fragmentation is a characteristic of
stream data.

A user application may be required to issue multiple RECEIVE service requests
to obtain all of the desired data. The data may arrive in particle segments.
An application should be designed to handle such a situation. Additionally,
users who write applications to process multiple record oriented data should
consider including a mechanism to delimit the data. Design options can include a
logical length field at the beginning of a record, or a special field, or fields, at the
end. This lets the application determine record boundaries.

The ADTOPTN1-2 fields specify RECEIVE processing control options. These
options provide the application more flexibility and make it easier to deal with
stream data than through the default blocking RECEIVE option.
ADTOPTN2_NWAIT allows for polling of a connection for data or for use with
the SELECT service. ADTOPTN1_TMRCV and ADTOPTN1_TMPRT provide
logical request capabilities to the RECEIVE service. The options
ADTOPTN1_TYPSP and ADTOPTN1_TYPLL allow for built-in record delimiters

The queue and buffer size values are specified during connection initialization
and can be modified by either the LISTEN or CONNECT services. An application
that is dependent on these values should validate the requested values,
compared with those values returned within the ACM. The values are modified
if the transport provider site administrator has configured limits and the
application request exceeds those values. If the requested values are modified,
verify site definition statements for API transport services.

The ADTVERS version number indicates the Unicenter SOLVE:CPT release level
in which this user application program is written. This required field must be set
to ACMVERSN (binary 2) and is validated by the RECEIVE service before
processing the request.

The ADTFUNC function code indicates the Unicenter SOLVE:CPT callable
service ID. The field is not initialized by a user application program and has little
value to the application except for dump analysis. The function code identifies
and maps an argument list with the error or trace log and dump analysis.

Usage Notes

9–36 PL/I Programmers Guide

The token, ADTTOKEN, specifies the connection that is to receive data. This is a
required field and is validated by the RECEIVE service before processing the
request.

The data buffer address field, ADTBUFFA, is a full word. The application
program assures that the residency mode of data areas it manages (for example,
argument lists) is compatible with the addressing mode. The transport provider
performs consistency checks on the addressing mode whenever a service request
is issued. However, unpredictable results can occur before the transport provider
can perform this check.

The ADTBUFFL field indicates the data buffer length. This is a full word
unsigned integer. The data buffer length field should be less than or equal to the
maximum receive buffer values. However, if the data buffer length is greater
than the maximum receive buffer, the RECEIVE service attempts to satisfy the
user’s request with multiple transport provider requests. On return from the
RECEIVE service, the ADTBUFFL is updated with a value that indicates the
number of bytes processed.

Complete Parameter List

RECEIVE Service 9–37

Complete Parameter List
ADTBUFFA Required. User data address. Indicates the storage address into which network

data is placed. This is a contiguous segment of storage accessible to the user task.
The storage area can be aligned on any boundary convenient for the application
program.

Default: None.

ADTBUFFL Required. User data length. Indicates the length (in bytes) of user data in the
storage area as identified by the ADTBUFFA operand. The length is updated
when the request is completed to reflect the actual length of user data received.

This field must be interpreted on completion to determine the amount of data
actually received. If a RECEIVE request is issued with a zero length, an error is
detected and the request fails.

Default: None.

ADTDGNCD Diagnostic code. Indicates the diagnostic code set by the service request. This
value generally indicates a transport provider return code.

Default: None.

ADTFUNC Function code. Indicates the function or callable service ID requested by the
application program. This field should not be set by the application, but is
initialized by the TRUE interface stub program.

Default: None

ADTLADDR Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTLNAME Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTLPORT Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTMRECV Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

Complete Parameter List

9–38 PL/I Programmers Guide

ADTMSEND Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTMSOCK Has no meaning for TCP connections, since the maximum number of sockets is
set at connection establishment time through the ACMMSOCK field.

ADTNSLCT Number of entries in the selected vector. Not used by the RECEIVE service.

ADTOPTN1 Specifies byte one(1) of data transfer options.

These are the ADT options that apply to TCP data transfer requests:

It is an error to just combine any of these RECEIVE service options:

ADTOPTN1_NBLKR ADTOPTN1_TYPLL ADTOPTN1_TYPSP

ADTOPTN1_TMRCV ADTOPTN1_TMPRT

Important! An invalid combination will result in CPTEOPTN being returned in
ADTRTNCD.

ADTOPTN1_BLCKS This option was disabled with the CPT 6.1 API conversion.
This option is ignored.

ADTOPTN1_DODNR Do DNR name resolution (not used by the SEND
service).

ADTOPTN1_NBLKR Do not block on a call to the RECEIVE service. If no data is
currently available on the connection, CPTWBLCK is
returned in ADTRTNCD.

 This token can subsequently be passed to the SELECT tool.
See SELECT tool.

Complete Parameter List

RECEIVE Service 9–39

ADTOPTN1_NBLKS This option was disabled with the CPT 6.1 API conversion.
This option is ignored.

ADTOPTN1_TMPRT Timed partial record RECEIVE.

 These fields (along with other required ADT fields) are
used to request a timed partial record RECEIVE:

 ADTBUFFL set to maximum length expected.
 ADTOPTN1_TMPRT

 ADTTIMEO > zero

 If the time limit expires before receiving data, CPTWTIMO
is returned in ADTRTNCD. If the time limit expires and
any data is received, the data, along with a zero
ADTRTNCD, is returned to the caller.

ADTOPTN1_TMRCV Timed full record RECEIVE. These fields (along with
other required ADT fields) are used to request a timed full
record RECEIVE:

 ADTBUFFL set to the length expected

 ADTOPTN1_TMRCV

 ADTTIMEO > zero

 If the time limit expires before receiving any or all of the
data specified by ADTBUFFL, CPTWTIMO is returned in
ADTRTNCD along with any data that was received.

ADTOPTN1_TYPLL LL type RECEIVE, see example in section: LL RECEIVE
Option

 These fields (along with other required ADT fields) are
used to request a SEP type RECEIVE call:

 ADTOPTN1_TYPLL

 ADTTIMEO > zero

 If the time limit expires before receiving any or all of the
data specified by the LL (first two bytes of the data stream),
CPTWTIMO are returned in ADTRTNCD along with any
data that was received.

Complete Parameter List

9–40 PL/I Programmers Guide

ADTOPTN1_TYPSP SEP type RECEIVE, see example in section: Separator
Character RECEIVE Option.

 These fields (along with other required ADT fields) are
used to request a SEP type RECEIVE call:

 ADTOPTN1_TYPSP

 ADTSEP# = 1 or 2

 ADTSEP1 = character

 ADTSEP2 = character if ADTSEP# = 2

 ADTTIMEO > zero

 If the time limit expires and data is received, but no SEP
characters are found, the data, along with an ADTRTNCD
of CPTWNSEP is returned to the caller.

Default: None.

ADTOPTN2 Specifies byte two(2) of data transfer options.

These are the ADT options that apply to TCP data transfer requests:

ADTOPTN2_VLIST Currently for internal use only.

ADTOPTN2_NQUE Do not QUEUE API RECEIVES.

ADTOPTN2_NOSTP Do not strip record delimiter sequence.

 This can be used with ADTOPTN1_TYPSP or
ADTOPTN1_TYPLL to return the actual separator
sequence or LL field in the buffer pointed to by
ADTBUFFA.

ADTOPTN2_NWAIT Do not wait on a call to the RECEIVE service. If no data is
currently available on the connection, CPTWBLCK is
returned in ADTRTNCD.

 The token can subsequently be passed to the SELECT tool.
See The SELECT tool in the chapter “Unicenter
SOLVE:CPT Tools.”

 This differs from ADTOPTN1_NBLKR since
ADTOPTN2_NWAIT can be used for all types of receives
(timed, separator, LL) whereas ADTOPTN1_NBLKR is a
normal non-blocking stream receive.

Complete Parameter List

RECEIVE Service 9–41

ADTOPTN2_RT100 The ADTTIMEO value is expressed in 1/100 of a second.

When flag ADTRT100 is not set in the ADTOPTN2 field
then field ADTTIMEO specifies the amount of time in
seconds to wait for data to be received.

When flag ADTRT100 is set in the ADTOPTN2 field then
field ADTTIMEO specifies the amount of time in 1/100
seconds to wait for data to be received.

Default: None.

ADTQRECV Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTQSEND Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTRADDR Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTRNAME Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTRPORT Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTRTNCD Return code. Indicates the return code set by the RECEIVE service. This value is
also returned in register 15 and indicates the success or failure of the service.

Default: None.

ADTSEP# Number of separator characters for option ADTOPTN1_TYPSP. When option
ADTOPTN1_TYPSP has been set then the ADTSEP# must be either one or two or
CPTESEP# will be returned in the ADTRTNCD field.

Default: None.

ADTSEP1 First or only separator character for option ADTOPTN1_TYPSP.

Default: None.

Complete Parameter List

9–42 PL/I Programmers Guide

ADTSEP2 Second separator character in a sequence of two for option ADTOPTN1_TYPSP.

Default: None.

ADTSLCTD Number of tokens selected. Not used by the RECEIVE service.

ADTSRVCE Used only by the UDP calls: RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTSTAT Specifies statistics logging options for the application program.

ACMSTATS_CONN Specifies that messages be generated on the initial
connection of a session.

ACMSTATS_TERM Specifies that messages be generated on terminating an
established connection.

Default: None, no statistics logging.

ADTTIMEO RECEIVE timeout value.

Must be specified with these options:

■ ADTOPTN1_TMPRT

■ ADTOPTN1_TMRCV

■ ADTOPTN1_TYPLL

■ ADTOPTN1_TYPSP

Specifying any of the above options on a RECEIVE call with an ADTTIMEO
value of zero (0) results in CPTETIME being returned in ADTRTNCD.

When flag ADTRT100 is not set in the ADTOPTN2 field then field ADTTIMEO
specifies the amount of time in seconds to wait for data to be received.

When flag ADTRT100 is set in the ADTOPTN2 field then field ADTTIMEO
specifies the amount of time in 1/100 seconds to wait for data to be received.

A CPTWTIMO error occurs when the data is not received by the ADTTIMEO
timeout.

Default: None.

Complete Parameter List

RECEIVE Service 9–43

ADTTOKEN Required. Data transfer token. ADTTOKEN specifies a token that represents a
TCP connection.

If the ADT is being passed in a call to either the RECEIVE or SEND service, then
it must be a token representing a previously established TCP connection, using
the CONNECT or LISTEN service.

It is an error to pass a zero ADTTOKEN to either the RECEIVE or SEND service.
It is an error to pass a TCP token to the UDP data transfer service routines:
RCVFROM and SENDTO. Conversely, it is an error to pass a UDP token to the
TCP data transfer routines: RECEIVE and SEND.

Default: None.

ADTTRACE Note: The tracing functionality has moved in version 6 of Unicenter SOLVE:CPT.
A greatly enhanced tracing capability is now available using the TCPEEP tracing
command. See the Administrator Guide for more detail.

These tracing fields remain only for downward compatibility purposes and are
ignored.

ACMTRAC1_NTRY ACMTRAC1_TERM ACMTRAC2_TPL

ACMTRAC1_ARGS ACMTRAC1_PASS ACMTRAC2_RLSE

ACMTRAC1_RECV ACMTRAC1_CLSE ACMTRAC2_STOR

ACMTRAC1_SEND ACMTRAC1_TERR ACMTRAC2_CLTD

ADTUCNTX Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTVECTR Address of the selected vector. Not used by the RECEIVE service.

ADTVERS Required version number. Indicates the Unicenter SOLVE:CPT version number
of the argument used by the calling program.

Must be set to a binary two(2) for this release of Unicenter SOLVE:CPT.

Default: None.

SEND Service 10–1

Chapter

10 SEND Service

The SEND service sends data to a peer transport user connected to an endpoint.
It also sends data as output on a connection-mode (TCP) endpoint only.

To invoke the SEND service, a user application is required to first build an ADT
(Argument for Data Transfer) and then to issue a call to the SEND routine. The
ADT contains the version number, connection token, user buffer address, and
length. When the SEND service completes, the buffer length field is updated to
reflect the amount of data processed.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the SEND service call

■ Recommended ADT Parameters—Lists the parameters normally used and
recommended for the SEND service call

■ Usage Examples—Provides a sample program shell for using the SEND
service call

■ Parameter Values Returned in the ADT—List fields that are updated in the
ADT control block upon return from the SEND service call

■ PL/I Structures— Lists information about the distributed sample PL/I
structures that are used by the SEND service call

■ Sample Programs—Sample PL/I programs that use the SEND service.

■ Completion Information—Describes the expected results at completion of the
SEND service call

■ Return Codes—Lists the return codes that can apply to the SEND service call

■ Usage Notes—Contains miscellaneous notes about usage of the SEND
service call

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the SEND service call

Call Syntax

10–2 PL/I Programmers Guide

Call Syntax
CALL T09FSEN (CPT_ADT);

Recommended ADT Parameters
The following table lists the recommend parameters to use with the SEND
service. These parameters are set within the ADT control block.

For a complete list of optional parameters, see Complete Parameter List

Field Name Description

ADTBUFFA Set to address of user data area.

ADTBUFFL Set to the length of the record in the ADTBUFFA field.

ADTTOKEN Data transfer token, which identifies the session.

ADTVERS Version should be set to ACMVERSN (binary 2).

To use the LL SEND Option method you must move ADTOPTN1_TYPLL to the
ADTOPTN1 field in addition to setting the recommended fields above.

The following list contains the recommended optional parameters needed to use
the Separator Character SEND Option method in addition to setting the
recommended fields above.

Field Name Description

ADTOPTN1 Receiving method: set to ADTOPTN1_TYPSP.

ADTSEP# Set to 1 or 2 for the number of separator characters.

ADTSEP1 First or only separator character.

ADTSEP2 Second separator character in a sequence of two.

When a caller specifies the Separator option type using setting
ADTOPTN1_TYPSP, the Unicenter SOLVE:CPT SEND service appends the
specified separator characters after the data packet before sending it to the
remote.

Recommended ADT Parameters

SEND Service 10–3

LL SEND

LL SEND Option In the LL SEND option, records are prefixed by a two-byte hexadecimal
length field indicating the number of bytes to follow.

LL Example The following is a hexadecimal example of a data stream where a two-byte
LL length field containing x'000A' precedes the network data, where a
hexadecimal example of a data stream that is passed to the SEND service as
addressed by the ADTBUFFA field.

D4E8E3C5E2E3D9C5C3F2

The SEND service creates the following hexadecimal string before sending the
packet to the remote. The LL header is in bold.
000AD4E8E3C5E2E3D9C5C3F2

where:

000A Length of the data record.

MYTESTREC2 The character data in the record.

Separator Character SEND

Separator
Character
SEND Option

In the separator character SEND option type, the records are delimited by
appending one or two separator characters after the data.

Note: The major limitation with the separator character SEND option is that
the data may never contain a natural occurrence of the separator characters.

Double
Separator
Character
Example

The following is a hexadecimal example of a data stream using x'0D0A' as a
separator character, which is in bold. In this example, a hexadecimal example
of a data stream that is passed to the SEND service as addressed by the
ADTBUFFA field.

E3C5E2E3D9C5C3F1

The SEND service creates the following hexadecimal string before sending the
packet to the remote. Two separator characters CRLF (carriage return) are
appended to the end, this is shown in bold:
E3C5E2E3D9C5C3F10D0A

where:

TESTREC1 The data record to send.

0D0A CRLF terminates the data stream sent to the remote.

Usage Examples

10–4 PL/I Programmers Guide

Single Separator
Character Example

The following is a hexadecimal example of a data stream using x'FF' as a
separator character which is in bold. Also, a data stream is passed to the SEND
service as addressed by the ADTBUFFA field.
D4E8E3C5E2E3D9C5C3F2

The SEND service creates the following hexadecimal string before sending the
packet to the remote. The single separator character x'FF' is appended to the end,
this is shown in bold.

D4E8E3C5E2E3D9C5C3F2FF

where:

MYTESTREC2 The character data record to send.

FF Terminates the data stream that is sent to the remote.

Usage Examples
There are three types of SEND calls that an application can choose to use:

■ Data SEND Example—Sends data without any changes or record indicators

■ LL SEND Example—Data is prefixed with a LL length

■ Separator Character SEND Example—Data is terminated by separator
characters

Usage Examples

SEND Service 10–5

Data SEND Example

In this example, the data is placed out in the network exactly as it was placed
into the ADTBUFFA buffer.

It is up to the remote application to determine when it has received all the data of
a particular record.

The token is loaded into the ADTTOKEN field from the ACM. The ADTBUFFA
field contains the data buffer address. The ADTBUFFL contains the length of
data to send across the network.

The application checks the ADTRTNCD return code field to determine the SEND
service completion status.

Note: The statements related to the SEND service appear in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FSEN)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (CPTPRT,MSGPRT) POINTER;
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL DATA BIT (1) INTI ('1'B);
DCL MESSAGE CHAR (80)
 INIT('WELCOME TO THE CICS/API PROGRAMMING WORLD');
%INCLUDE T09KPCON;
 /*
 CPT Connection Management service request
 */
 ADTTOKEN = ACMTOKEN;
 DO WHILE (DATA);
 /*
 Application to process data
 /*
 CPT SEND Facility Management service request
 */
 ADTBUFFA = ADDR(MESSAGE);
 ADTBUFFL = 80;
 CALL T09FSEN (CPT_ADT);
 IF ADTRTNCD ^= 0
 THEN DO;
 /*
 Process and log SEND error
 Terminate WHILE condition
 */
 END;
 END;
 /*
 CPT Connection Release service request
 */
 /*
 Terminate transaction
 */
 EXEC CICS RETURN;

Usage Examples

10–6 PL/I Programmers Guide

LL SEND Example

In this LL SEND example, the data is sent out on to the network prefixed by a
two-byte length field followed by the data from the ADTBUFFA buffer of size
ADTBUFFL.

The remote application knows how many bytes it has to read after it examines
the first two bytes of LL length sent in the data packet.

The token is loaded into the ADTTOKEN field from the ACM. The ADTBUFFA
field contains the data buffer address. The ADTBUFFL contains the caller’s
length of data to send across the network. The ADTOPTN1_TYPLL flag directs
the SEND process to convert the ADTBUFFL value to a two-byte field and place
it out on the network before the data in the ADTBUFFA buffer.

The application checks the ADTRTNCD return code field to determine the SEND
service completion status.

Note: The statements related to the SEND service appear in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FSEN)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (CPTPRT,MSGPRT) POINTER;
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL DATA BIT (1) INTI ('1'B);
DCL MESSAGE CHAR (80)
 INIT('WELCOME TO THE CICS/API PROGRAMMING WORLD');
%INCLUDE T09KPCON;
 /*
 CPT Connection Management service request
 */
 ADTTOKEN = ACMTOKEN;
 ADTOPTN1 = ADTOPTN1_TYPLL; /* insert separator characters */

 DO WHILE (DATA);
 /*
 Application to process data
 /*
 CPT SEND Facility Management service request
 */
 ADTBUFFA = ADDR(MESSAGE);
 ADTBUFFL = 80;
 CALL T09FSEN (CPT_ADT);
 IF ADTRTNCD ^= 0
 THEN DO;
 /*
 Process and log SEND error
 Terminate WHILE condition
 */
 END;
 END;
 /*
 CPT Connection Release service request
 */

Usage Examples

SEND Service 10–7

 /*
 Terminate transaction
 */
 EXEC CICS RETURN;

Separator Character SEND Example

In the Separator Character SEND example, the ADTBUFFA data is sent out on
the network post fixed by two bytes containing carriage return (x'0D') and line
feed (x'0A').

The remote application will know it has to read all the bytes in a record when it
finds two bytes in the data stream that match the ADTSEP1 and ADTSEP2 fields.

The token is loaded into the ADTTOKEN field from the ACM. The ADTBUFFA
field contains the data buffer address. The ADTBUFFL contains the caller’s
length of data to send across the network. The ADTOPTN1_TYPSP flag along
with the value two set in the ADTSEP# field directs the SEND process to send
the ADTBUFFA buffer data followed by the ADTSEP1 and ADTSEP2 character
values.

The application checks the ADTRTNCD return code field to determine the SEND
service completion status.

Usage Examples

10–8 PL/I Programmers Guide

Note: The statements related to the SEND service appear in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FSEN)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (CPTPRT,MSGPRT) POINTER;
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL DATA BIT (1) INTI ('1'B);
DCL MESSAGE CHAR (80)
 INIT('WELCOME TO THE CICS/API PROGRAMMING WORLD');
%INCLUDE T09KPCON;
 /*
 CPT Connection Management service request
 */
 ADTTOKEN = ACMTOKEN;
 ADTOPTN1 = ADTOPTN1_TYPLL; /* insert separator characters */
 ADTSEP# = 2; /* number of separator characters */
 ADTSEP1 = ‘0D’X; /* 1st sep.char: carriage return */
 ADTSEP2 = ‘0A’X; /* 2nd sep.char: line feed */

 DO WHILE (DATA);
 /*
 Application to process data
 /*
 CPT SEND Facility Management service request
 */
 ADTBUFFA = ADDR(MESSAGE);
 ADTBUFFL = 80;
 CALL T09FSEN (CPT_ADT);
 IF ADTRTNCD ^= 0
 THEN DO;
 /*
 Process and log SEND error
 Terminate WHILE condition
 */
 END;
 END;
 /*
 CPT Connection Release service request
 */
 /*
 Terminate transaction
 */
 EXEC CICS RETURN;

Parameter Values Returned in the ADT

SEND Service 10–9

Parameter Values Returned in the ADT
After the SEND call returns control to your application program, the following
fields are propagated with the results of the SEND service call. These updated
values are passed back to the application in the ADT control block.

Parameters Description

ADTBUFFL The number of user data bytes actually sent.

ADTDGNCD Diagnostic code.

ADTRTNCD Return code.

PL/I Structures
Sample PL/I structures are provided in the distributed software and are
available to you in cpthlq.T09MAC. Variable field names contained in the
distributed samples and the examples in this guide refer to these structures.

T09KPADT PL/I structure name for the ADT. For detailed information
and a sample copy of the PL/I structure, see the ADT:
Argument for Data Transfer Used by RECIEVE, SEND,
RECVFROM, and SENDTO Services Service section in
appendix “Control Block Layouts.”
Note: An excerpt of the PL/I constants that apply to ADT
calls immediately follows the ADT in the appendix.

T09KPCON The PL/I structure name for PL/I constants that apply to
the various service calls. For detailed information and a
sample copy of the PL/I copybook see T09KPCON: PL/I
Call Constants Copybook section of the appendix “Control
Block Layouts”

Sample Programs

10–10 PL/I Programmers Guide

Sample Programs
Sample PL/I source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PPCL1 Client Application: Sends typed in data to the server waiting for
the information to be echoed back from the server.

T09PPCL2 Client Application: Sends an internal message using the FULL,
SEP or LL to be echoed back by the server.

T09PPSV1 TCP Server 1 program: A single-threaded server using a Listen
API call.

T09PPSV2 TCP Server 2 program: A multithreaded server using the Listen
Tool.

Completion Information
The SEND service sends normal data as output through a Unicenter SOLVE:CPT
connection. The data may be part of a byte stream being sent over a connection
(TCP).

Data is moved from the application program’s storage area to storage areas
maintained by the transport provider. The data is packetized and sent to the
remote connection transport user. Logical boundaries are not preserved in the
data stream. The data is delivered to the peer transport user in the precise order
in which it was sent. However, this data may be fragmented.

Data is not necessarily packetized and sent by the transport provider each time a
SEND service call is issued, nor is it sent when a buffer boundary is indicated.
The transport provider may intentionally delay sending data as the result of
performance optimization or congestion avoidance algorithms. Typically, data
generated by the application is forwarded when it is sent in a continuous flow.

The SEND service completes after it copies data out of the ADTBUFFA buffer
into the internal TCP/IP data buffers for data transfer across the network.

Completion Information

SEND Service 10–11

The buffer size represents the maximum number of user data bytes that can be
transferred by the application in a single SEND request to the transport provider.
This value is application dependent. A small value causes the SEND service to
issue multiple SEND requests. Multiple SEND requests do not present a
problem. A large buffer value can waste application storage.

The buffer size value is specified during connection initialization and can be
modified on return. An application that is dependent on the buffer size value
should validate the requested values, compared with values returned within the
ACM. The values are modified if the transport provider site administrator has
configured limits and the application request exceeds those values. If the
requested values are modified, verify site definition statements for API transport
services.

The ADTVERS version number indicates the Unicenter SOLVE:CPT release level
in which this user application program is written. This required field must be set
to ACMVERSN (binary 2) and is validated by the SEND service before
processing the request.

The ADTFUNC function code indicates the Unicenter SOLVE:CPT callable
service ID. The field is not initialized by a user application program and has little
value to the application except for dump analysis. The function code identifies
and maps an argument list with the error or trace log and dump analysis.

The token, ADTTOKEN, indicates the connection that is to transmit data.
This required field is validated by the SEND service before processing the
request.

The data buffer address field ADTBUFFA is a full word. The application
program assures that the residency mode of data areas it manages (for example,
argument lists) is compatible with the addressing mode. The transport provider
performs consistency checks on the addressing mode whenever a service request
is issued. However, unpredictable results may occur before the transport
provider can perform this check.

The ADTBUFFL field specifies the data buffer. This is a full word, positive
integer. The data buffer length field should be less than or equal to the maximum
send buffer values. However, if the data buffer length is greater than the
maximum send buffer, the SEND service fragments the user data into multiple
transport provider requests. The ADTBUFFL is updated on return from the
SEND service with a value that indicates the number of bytes processed.

Return Codes

10–12 PL/I Programmers Guide

Return Codes
The SEND service returns codes indicating the results of the execution. These
values are in the ADTRTNCD (R15) and ADTDGNCD (R0).

structure T09KPRCS contains equates and descriptions for the possible return
codes. T09KPRCS is available in the distributed software in cpthlq.T09MAC. For
a sample copy of the T09KPRCS structure, see the appendix “Return Codes.”

This table describes the SEND service return codes.

Decimal Hex Diagnostic Code Variable Description
0 0 No CPTIRCOK Request completed

successfully.

6 6 35=EWOULDBLOC
K

CPTWBLCK Data available in the
SEND buffers. The
ACMMSEND value
holds the largest
possible block of data
that can be sent by the
SEND command.

17 11 No CPTEVERS Control block version
number not supported.

20 14 No CPTETOKN Specified data transfer
token is invalid.

21 15 No CPTEBUFF Buffer address and/or
length invalid.

28 1C No CPTESEP# Bad value in ADTSEP#
field

29 1D No CPTEOPTN Caller has requested
both
ADTOPTN1_TYPSP and
ADTOPTN1_TYPLL.

31 1F No CPTEFRMT Other Socket Call
Parameter List format or
specification error.

34 22 No CPTENAPI API not fully available;
retry.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental

Usage Notes

SEND Service 10–13

Decimal Hex Diagnostic Code Variable Description
condition.

65 41 Yes CPTERLSE Orderly release of
remote connection
request.

68 44 Yes CPTEDISC Remote connection not
available or aborted.

72 48 Yes CPTEPRGE Remote connection
environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data
integrity error.

143 8F Yes CPTEPROC Procedural error.
254 FE Is abend code CPTABEND Abnormal termination.

Note: The diagnostic
code is the abnormal
termination code, which
is normally a CICS
abend code, but can also
be in the “Abend Codes”
chapter of the Message
Guide.

255 FF No CPTEOTHR Other error.

Usage Notes
The SEND service sends normal data as output through a Unicenter SOLVE:CPT
connection. The data may be part of a byte stream being sent over a connection
(TCP).

Data is moved from the application program’s storage area to storage areas
maintained by the transport provider. The data is packetized and sent to the
connection transport user. Logical boundaries are not preserved in the data
stream. The data is delivered to the peer transport user in the precise order in
which it was sent. However, this data may be fragmented.

Data is not necessarily packetized and sent by the transport provider each time a
SEND service is not issued, nor is it sent when a buffer boundary is indicated.
The transport provider may intentionally delay sending data as the result of
performance optimization or congestion avoidance algorithms. Normally, data
generated by the application is forwarded when it is sent in a continuous flow.

Usage Notes

10–14 PL/I Programmers Guide

The queue and buffer size values are specified during connection initialization
and can be modified on return. An application that is dependent on these values
should validate the requested values, compared with values returned within the
ACM. The values are modified if the transport provider site administrator has
configured limits and the application request exceeds those values. If the
requested values are modified, verify site definition statements for API transport
services.

The ADTVERS version number indicates the Unicenter SOLVE:CPT release level
in which this user application program is written. This required field must be set
to ACMVERSN (binary 2) and is validated by the SEND service before
processing the request.

The ADTFUNC function code indicates the Unicenter SOLVE:CPT callable
service ID. The field is not initialized by a user application program and has little
value to the application except for dump analysis. The function code identifies
and maps an argument list with the error or trace log and dump analysis.

The ADTTOKEN token indicates the connection that is to transmit data.
This required field is validated by the SEND service before processing the
request.

The data buffer address field ADTBUFFA is a full word. The application
program assures that the residency mode of data areas it manages (for example,
argument lists) is compatible with the addressing mode. The transport provider
performs consistency checks on the addressing mode whenever a service request
is issued. However, unpredictable results may occur before the transport
provider can perform this check.

The data buffer length is indicated by the ADTBUFFL field. This is a full word,
positive integer. The data buffer length field should be less than or equal to the
maximum send buffer values. However, if the data buffer length is greater than
the maximum send buffer, the SEND service fragments the user data into
multiple transport provider requests. The ADTBUFFL is updated on return from
the SEND service with a value that indicates the number of bytes processed.

The ADTOPTN1 and ADTOPTN2 fields specify SEND processing control
options and provides a mechanism for event notification on return to the
application program.

Complete Parameter List

SEND Service 10–15

Complete Parameter List
Note: For a recommended list of parameters, see Recommended ADT Parameters earlier
in this chapter.

ADTBUFFA User data address. ADTBUFFA indicates the address of user data to send to the
connected, or associated, transport user. This is a contiguous segment of storage
accessible to the user task. The content of all user data is application-dependent,
and is not interpreted by either Unicenter SOLVE:CPT or the transport provider.
The storage area can be aligned on any boundary convenient for the application
program.

Default: None.

ADTBUFFL User data length. ADTBUFFL indicates the length, in bytes, of user data in the
storage area identified by the ADTBUFFA operand. The length is updated when
the request is completed to reflect the actual length of user data sent. Generally,
the length returned is equal to the length requested.

If a SEND request is issued with a zero length, an error is detected and the
request fails.

Default: None.

ADTDGNCD Diagnostic code. Indicates the diagnostic code set by the service request. This
value generally indicates a transport provider return code.

Default: None.

ADTFUNC Function code. Indicates the function or callable service ID requested by the
application program. This field should not be set by the application, but rather is
initialized by the TRUE interface stub program.

Default: None.

ADTLADDR Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTLNAME Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTLPORT Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

Complete Parameter List

10–16 PL/I Programmers Guide

ADTMRECV Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTMSEND Used only by the UDP calls RCVFROM and SENDTO. For TCP connections,
this parameter is set in the equivalent ACM field.

ADTMSOCK Has no meaning for TCP connections, since the maximum number of sockets is
set at connection establishment time through the ACMMSOCK field.

ADTNSLCT Number of entries in the SELECT vector. Not used by the SEND service.

ADTOPTN1 Specifies data transfer options for byte 1.

Option Description

ADTOPTN1_BLCKS This option was disabled with the CPT 6.1 API
conversion. This option is ignored.

ADTOPTN1_DODNR Do DNR name resolution (not used by the SEND
service).

ADTOPTN1_NBLKR Do not block on a call to the RECEIVE service. Not
used by the SEND service.

ADTOPTN1_TMPRT Timed partial record RECEIVE. Not used by the SEND
service.

ADTOPTN1_TMRCV Timed full record RECEIVE. Not used by the SEND
service.

ADTOPTN1_TYPLL LL type SEND. See LL SEND for an example of how
ADTOPTN1_TYPLL works. These fields (along with
other required ADT fields) are used to request a LL type
SEND call:
ADTOPTN1 = ADT OPTN1_TYPLL

ADTOPTN1_TYPSP SEP type SEND. See Separator Character SEND for an
example of how ADTOPTN1_TYPSP works. These files
(along with other required ADT fields) are used to
request a SEP type SEND call:
ADTOPTN1 = ADTOPTN1_TYPSP
ADTSEP# = 1 OR 2
ADTSEP1 = character
ADTSEP2 = character, if ADTSEP# = 2

Complete Parameter List

SEND Service 10–17

It is an error to combine these SEND service options:

ADTOPTN1_TYPLL
ADTOPTN1_TYPSP

Note: An invalid combination will result in CPTEOPTN being returned in
ADTRTNCD.

Default: None.

ADTOPTN2 Specifies data transfer options for byte 2.

Option Description

ADTOPTN2_FVLST Currently for internal use only.

ADTOPTN2_NOSTP Do not strip record delimiter sequence. Not used by
the SEND service.

ADTOPTN2_NWAIT Do not wait for completion. Not used by the SEND
service.

ADTOPTN2_NOQUE Do not QUEUE API RECEIVES. Not used by the
SEND service.

ADTQRECV Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field. The only
valid value is one.

ADTQSEND. Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field. The only
valid value is one.

ADTRADDR Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTRNAME Used only by the UDP calls RCVFROM and SENDTO.

ADTRPORT Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTRTNCD Return code. Indicates the return code set by the SEND service. This value is also
returned in register 15 and indicates the success or failure of the service.

Default: None.

Complete Parameter List

10–18 PL/I Programmers Guide

ADTSEP# Number of separator characters for option ADTOPTN1_TYPSP
(0 < ADTSEP# < 3). If ADTSEP# is not equal to 1 or 2, CPTESEP# is returned in
ADTRTNCD.

Default: None.

ADTSEP1 First or only separator character for option ADTOPTN1_TYPSP.

Default: None.

ADTSEP2 Second separator character in a sequence of two for option ADTOPTN1_TYPSP.

Default: None.

ADTSTAT Specifies statistics logging options for the application program.

ADTSCONN Specifies that messages be generated on the initial
connection of a session.

ADTSTERM Specifies that messages be generated on terminating an
established connection.

Default: Zero, no statistics logging.

ADTTIMEO RECEIVE timeout value. Not used by the SEND service.

Default: None.

ADTTOKEN It specifies the token, which represents a TCP connection.

If the ADT is passed in a call to either the RECEIVE or SEND service, it must be a
token representing a previously established TCP connection, using the
CONNECT or LISTEN service.

It is an error to pass a zero ADTTOKEN to either the RECEIVE or SEND service.
It is an error to pass a TCP token to the UDP data transfer service routines,
RCVFROM and SENDTO. Conversely, it is an error to pass a UDP token to the
TCP data transfer routines, RECEIVE and SEND.

Default: None.

Complete Parameter List

SEND Service 10–19

ADTTRACE Note that the tracing functionality has moved in version 6 of Unicenter
SOLVE:CPT. A greatly enhanced tracing capability is now available via the
TCPEEP tracing command. See the Administrator Guide for more detail. These
tracing fields remain only for downward compatibility purposes and are
ignored.

ACMTRACE1_NTRY ACMTRACE1_TERM ACMTRACE2_TPL

ACMTRACE1_ARGS ACMTRACE1_PASS ACMTRACE2_RLSE

ACMTRACE1_RECV ACMTRACE1_CLSE ACMTRACE2_STOR

ACMTRACE1_SEND ACMTRACE1_TERR ACMTRACE2_CLTD

ADTUCNTX Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

ADTVECTR Address of the SELECT vector. Not used by the SEND service.

ADTVERS Version. Indicates the Unicenter SOLVE:CPT version number of the argument
used by the calling program.

Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

SENDTO Service 11–1

Chapter

11 SENDTO Service

This service is provided to enable the development of connectionless client and
server applications. This service is UDP only.

The SENDTO service provides two basic functions:

■ Establishes a UDP client endpoint represented by a new token and sends a
datagram to a remote UDP server.

This function is indicated to the SENDTO service by passing an ADTTOKEN
equal to zero. SENDTO then creates all the internal control blocks and the
SENDTO buffer queue. Even though the RCVFROM buffer queue is not
allocated for this endpoint (token) until the RCVFROM service is called, the
RCVFROM buffer size and number must be specified at this time because
they are negotiated with the transport provider and recorded in the internal
Unicenter SOLVE:CPT control blocks at endpoint creation time. On return
from the SENDTO service, ADTTOKEN contains the token value to pass to
subsequent SENDTO and RCVFROM service calls.

■ Sends a datagram at a previously established UDP endpoint represented by
an existing token.

This functionality makes the SENDTO service call just a data transfer call
that can be used by a client or server application. The SENDTO buffer queue
is only allocated upon the first call to the SENDTO service whether
ADTTOKEN is equal to zero or not.

UDP tokens created with the RCVFROM or SENDTO services cannot be passed
to the TCP only services, CONNECT, LISTEN, SEND, and RECEIVE. The other
Unicenter SOLVE:CPT service calls GIVE, TAKE, and TRANSLATE are available
to UDP applications.

Complete Parameter List

11–2 PL/I Programmers Guide

This chapter discusses these topics:

■ Call Syntax—Shows sample syntax for the SENDTO service call

■ Recommended ADT Parameters—Lists the parameters normally used and
recommended for the SENDTO service call

■ Usage Example—Provides a sample program shell for using the SENDTO
service call

■ Parameter Values Returned in the ADT—List the fields that are updated in
the ADT control block upon return from the SENDTO service call

■ PL/I Structures—Provides a list and information about the distributed PL/I
structures that are used by the SENDTO service call

■ Sample Programs—Lists and describes the distributed sample PL/I
programs that use the SENDTO service call

■ Network Considerations—Reviews network-related issues that may
influence your environment

■ Return Codes—Lists the return codes that can apply to the SENDTO service
call

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the SENDTO service call

Call Syntax

SENDTO Service 11–3

Call Syntax

CALL T09FSNT (CPT_ADT);

Recommended ADT Parameters
The following list contains the recommended parameters for use with the
SENDTO service. These parameters are set within the ADT control block.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

ADTBUFFA Set to address of user data area.

ADTBUFFL Set to the maximum expected length of any record.

ADTRADDR If ADTRNAME, is not used, Remote IP Host Address in
hexadecimal.

ADTRPORT Remote Well-Known Service Port.

ADTRNAME Remote IP host name, mutually exclusive with
ADTRADDR.

ADTTOKEN Data transfer token, set to zero (0) if initial call.

ADTVERS Version number should be set to ACMVERSN (binary 2).

Usage Example

11–4 PL/I Programmers Guide

Usage Example
In this example, a subset of the actual statements required is shown to emphasize
the use of a SENDTO call. In the example, a message is sent to a remote host. The
ADTRTNCD return code is checked to determine SENDTO service completion
status.

Note: The statements needed for the SENDTO service appear in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FSNT)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL 1 CPT_ADT,
 %INCLUDE SYSLIB(T09KPADT);
 %INCLUDE SYSLIB(T09KPRCS);
DCL MESSAGE CHAR (80)
 INIT('THIS IS THE PL/1 EXAMPLE');
%INCLUDE T09KPCON;
 /*
 Identify Service
 */
 ADTRPORT = 1980;
 ADTRNAME = '123.234.105.199';
 /*
 Application to process data
 */
 /*
 CPT SENDTO Facility Management service request
 */
 ADTBUFFA = ADDR(MESSAGE);
 ADTBUFFL = STG(MESSAGE);
 CALL T09FSNT (CPT_ADT);
 IF ADTRTNCD ^= 0
 THEN DO;
 /*
 Process and log SENDTO error
 Terminate WHILE condition
 */
 END;
 /*
 CPT Terminate Endpoint
 */
 /*
 Terminate transaction
 */
 EXEC CICS RETURN;

Parameter Values Returned in the ADT

SENDTO Service 11–5

Parameter Values Returned in the ADT
After the SENDTO call returns control to your application program, the
following fields are propagated with valid established connection information.
These updated values are passed back to the application in the ADT control
block.

Parameters Description

ADTLADDR Local IP Host Address.

ADTBUFFL The number of user data bytes actually sent.

ADTDGNCD Diagnostic Code.

ADTLNAME Local IP Host Name.

ADTLPORT Client Application Port.

ADTMRECV API receive buffer size.

ADTMSEND API send buffer size.

ADTQRECV API receive queue size, set to one.

ADTQSEND API send queue size, set to one.

ADTRADDR Remote IP Host Address.

ADTRTNCD Return Code.

ADTTOKEN Token—Connection or endpoint.

PL/I Structures

11–6 PL/I Programmers Guide

PL/I Structures
Sample PL/I structures are provided in the distributed software and are
available to you in cpthlq.T09MAC. Variable field names contained in the
distributed samples and the examples in this guide refer to these structures.

T09KPADT PL/I structure name for the ADT. For detailed information
and a sample copy of the PL/I structure, see the ADT:
Argument for Data Transfer Used by RECIEVE, SEND,
RECVFROM, and SENDTO Services Service section in the
appendix “Control Block Layouts.”
Note: An excerpt of the PL/I constants that apply to ACM
calls immediately follows the ACM in the appendix.

T09KPCON The PL/I structure name for PL/I constants that apply to
the various service calls. For detailed information and a
sample copy of the PL/I copybook see the T09KPCON:
PL/I Call Constants Copybook section of the appendix
“Control Block Layouts.”

Sample Programs
Sample PL/I source code is provided for your use. You should be able to find a
sample that matches your programming requirement. For more complete details
on the function a sample program provides, see the program descriptions in the
“Unicenter SOLVE:CPT API Services” chapter and the comments at the
beginning of the sample members listed below. These sample program members
are available in the distributed software in the cpthlq.T09SAMP library.

Name Description

T09PPCLU Sample UDP client.

T09PPSVU Sample UDP server.

Network Considerations

SENDTO Service 11–7

Network Considerations
The ADT is a common data structure used for both client and server UDP
applications. There are common and unique values specified for a particular
service request.

Name Server Conditions for RCVFROM Client Conditions for SENDTO

ADTLPORT Local server well-known port
selected by user application.

Local assigned transport provider port returned
to user application.

ADTRPORT Remote client transport provider port
returned to user-by-user application.

Remote server transport provider well-known
port selected by user application.

ADTRADDR Remote IP host address returned to
user application.

Remote IP host address selected by or returned
to user application.
The client must specify this field or
ADTRNAME.

ADTLNAME Local IP host name returned to user
application.

Local IP host name returned to user application.

ADTRNAME Remote IP host name returned to user
application only if
ADTOPTN1_DODNR is specified in
ADTOPTN1.

Remote IP host name selected by or returned to
the user application.
The client must specify this field or
ADTRADDR. If ADTRADDR is used,
ADTRNAME is only returned if
ADTOPTN1_DODNR is specified in
ADTOPTN1.

Return Codes

11–8 PL/I Programmers Guide

Return Codes
The SENDTO service returns codes indicating the results of the execution. These
values are in the ADTRTNCD (R15) and ADTDGNCD (R0).

Structure T09KPRCS contains equates and descriptions for the possible return
codes. T09KPRCS is available in the distributed software in cpthlq.T09MAC. See
the appendix “Return Codes” for a sample copy of the T09KPRCS structure.

The following table lists the return codes that can apply to the SENDTO call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

6 6 Yes CPTWBLCK Non-blocking call to the
RCVFROM service.

17 11 No CPTEVERS Control block version number
not supported.

18 12 Yes CPTECONN Required Parameter not passed.
For example, host, port, …

19 13 No CPTEPROT Specified protocol not
supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

21 15 No CPTEBUFF Buffer address and/or length
invalid.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

Return Codes

SENDTO Service 11–9

Decimal Hex Diagnostic
Code

Variable Description

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination. Note that
the diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

Complete Parameter List

11–10 PL/I Programmers Guide

Complete Parameter List
ADTBUFFA User data address. Indicates the storage address from which the UDP datagram

is sent (SENDTO service). This is a contiguous segment of storage accessible to
the user task. The content of all user data is application dependent, and not
interpreted by either Unicenter SOLVE:CPT or the transport provider. The
storage area can be aligned on any boundary convenient for the application
program.

Default None.

ADTBUFFL Specifies the length in bytes of the ADTBUFFA field.

On return to the caller, ADTBUFFL reflects the number of bytes actually sent
(generally the number requested).

It is an error to call the SENDTO service with an ADTBUFFL of zero.

Default: None.

ADTFUNC Function code. Indicates the function or callable service ID requested by the
application program. This field should not be set by the application, but rather is
initialized by the true interface stub.

Default: None.

ADTDGNCD Diagnostic code. Indicates the diagnostics code set by the SENDTO service. This
value generally indicates a transport provider return code.

Default: None.

ADTLADDR Local IP host address. Indicates the local host internet address. The local host
internet address is returned to the caller of the SENDTO service.

This field is an unsigned four-byte integer value.

Default: None.

ADTLNAME Local IP host name. Indicates the local host internet name. The local host internet
name is returned to the caller of the SENDTO service.

This field is a 255-byte character string that is padded with blanks.

Default: None.

Complete Parameter List

SENDTO Service 11–11

ADTLPORT Local well-known service port. Indicates the local transport layer port from
which the calling application will be sending (SENDTO) UDP datagrams. If the
SENDTO service creates the token, this port number is assigned by the transport
layer and returned to the caller. If the RCVFROM service creates the token, this is
the well-known port requested by the caller.

This field is an unsigned, positive integer with a maximum value of 65,534. The
value must be unique for each server application.

Default: None.

ADTMRECV API RECEIVE buffer size (used when ADTTOKEN=0). Specifies the maximum
number of user data bytes that can be transferred by the application in a single
RCVFROM request to the transport provider (API).

This value lets applications control input processing and can affect throughput
rates. The value is negotiated with the transport provider and can be modified by
the transport provider.

ADTMSEND API send buffer size (used when ADTTOKEN=0). Specifies the maximum
number of user data bytes that can be transferred by the application in a single
SENDTO request to the transport provider (API).

This value lets applications control output processing and can affect throughput
rates. The value is negotiated with the transport provider and can be modified by
the transport provider.

Default: 1024.

ADTNSLCT Number of entries in the SELECT vector.

Not used by the SENDTO service.

Complete Parameter List

11–12 PL/I Programmers Guide

ADTOPTN1 Specifies data transfer options. These are the ADT options that apply to UDP
data transfer requests:

ADTOPTN1_DODNR Execute internal DNR calls during UDP data transfer
service routine calls (RCVFROM and SENDTO) to resolve
remote IP addresses into IP names in the ADTRNAME
field.

ADTOPTN1_NBLKR Do not block on a call to the RCVFROM service.

 Not used by the SENDTO service.

ADTOPTN1_TMRCV This option allows the caller to wait up to specified
amount of time for a datagram.

 It must be used with the ADTOPTN1_NBLKR option, and
ADTTIMEO must be specified. This option is not used by
the SENDTO service.

These options can be toggled on every UDP data transfer call even if the caller is
using the same token.

Default: None.

ADTQRECV API receive queue size (used when ADTTOKEN=0). You should only specify
one. Adding extra buffers wastes storage and does not improve performance.

Default: One.

ADTQSEND API send queue size (used when ADTTOKEN=0). You should only specify one.
Adding extra buffers wastes storage and does not improve performance.

Default: One.

ADTRADDR Remote IP host address. Specifies the remote host internet address destination
for the datagram being processed by the SENDTO service.

This field is an unsigned four-byte integer value.

Default: None

Complete Parameter List

SENDTO Service 11–13

ADTRNAME Remote IP host name. Indicates the remote host internet name. It is only resolved
through internal DNR calls and returned to the caller of the UDP data transfer
service routines (RCVFROM and SENDTO) if the ADTOPTN1 flag,
ADTOPT_DODNR, is specified. This is to prevent the DNR call overhead on
every UDP data transfer call.

This field is a 255-byte character string that is padded with blanks.

Default: None.

ADTRPORT Remote port. Indicates the remote port destination for the datagram being
processed by the SENDTO service.

This field is an unsigned positive integer with a maximum value of 65,534.

Default: None.

ADTRTNCD Return code. Indicates the return code set by the SENDTO service. This value is
also returned in register 15 and indicates the success or failure of the service.

Default: None.

ADTSEP# Number of separator characters for option ADTOPTN1_TYPSP.

Not used in the SENDTO service.

Default: None.

ADTSEP1 First or only separator character for option ADTOPTN1_TYPSP.

Not used in the SENDTO service.

Default: None.

ADTSEP2 Second character or separator sequence for option ADTOPTN1_TYPSP. Not used
in the SENDTO service.

Default: None.

ADTSLCTD Number of tokens selected. Not used by the SENDTO service.

ADTSRVCE This field remains only for downward compatibility purposes and is ignored.
This field is no longer supported in Version 6 of CPT.

Complete Parameter List

11–14 PL/I Programmers Guide

ADTSTAT Specifies statistics logging options for the application program.

ACMSTATS_CONN Specifies that messages be generated on the closing of a
UDP token.

 These messages are generated by the Unicenter
SOLVE:CPT CLOSE service.

ACMSTATS_TERM Specifies that messages be generated on terminating an
established connection.

 These messages are generated by the Unicenter
SOLVE:CPT CLOSE service.

Default: None, no statistics logging.

ADTTIMEO RECEIVE timeout value. Not used by the SENDTO service

Default: None.

ADTTOKEN Data transfer token. Specifies a token that represents a UDP endpoint. If the ADT
is being passed in a call to either the RCVFROM or SENDTO service, the token
can be zero, indicating to either service, to first create a token before sending or
receiving a datagram. If the token is not zero, it must be a token created
previously by either the RCVFROM or SENDTO service.

It is not necessary or efficient to create a token every time a CICS transaction calls
the UDP data transfer services. It is an error to pass a TCP token to the UDP data
transfer service routines, RCVFROM and SENDTO. Conversely, it is an error to
pass a UDP token to the TCP data transfer routines, RECEIVE and SEND.

Default: None.

ADTTRACE Note that the tracing functionality has moved in Version 6 of Unicenter
SOLVE:CPT. A greatly enhanced tracing capability is now available via the
TCPEEP tracing command. Please see the Administrator Guide for more detail.
These tracing fields remain only for downward compatibility purposes and are
ignored.

ACMTRAC1_NTRY ACMTRAC1_TERM ACMTRAC2_TPL

ACMTRAC1_ARGS ACMTRAC1_PASS ACMTRAC2_RLSE

ACMTRAC1_RECV ACMTRAC1_CLSE ACMTRAC2_STOR

ACMTRAC1_SEND ACMTRAC1_TERR ACMTRAC2_CLTD

ADTUCNTX One word of user context. Specifies one arbitrary word of user context to
associate with the endpoint. The information provided is not interpreted by
Unicenter SOLVE:CPT, and is saved with other endpoint information.

Complete Parameter List

SENDTO Service 11–15

Default: None. No user context.

ADTVECTR Address of the SELECT vector. Not used by the SENDTO service.

ADTVERS Required. Version. Indicates the Unicenter SOLVE:CPT Version number of the
argument used by the calling program.

Must be set to binary two for this release of Unicenter SOLVE:CPT.

Default: None.

TAKE Service 12–1

Chapter

12 TAKE Service

Acquires ownership of a connection and associated internal Unicenter
SOLVE:CPT resources. You must use the TAKE service call to guarantee proper
passing of a connection from another transaction.

To invoke the TAKE service, a user application must first build an AFM
(Argument for Facility Management) and then issue a call to the TAKE routine.
The only valid and required arguments are the AFM version number and the
connection token. On completion, a return code is set that indicates the success or
failure of the request.

This chapter discusses the following topics:

■ Call Syntax—Sample syntax for the TAKE service call

■ Recommended AFM Parameters—Lists the parameters normally used and
recommended for the TAKE service call

■ Usage Example—Provides a sample program shell using the TAKE service
call

■ Parameter Values Returned in the AFM—Lists fields that are updated in the
AFM control block upon return from the TAKE service call

■ PL/I Structures —Lists information about the distributed sample PL/I
structures used by the TAKE service call

■ Sample Programs—Lists sample PL/I programs that use the TAKE service
call

■ Completion Information—Describes the expected results at completion of a
TAKE service call.

■ Return Codes—Gives a list of return codes that can apply to the TAKE
service call

■ Usage Notes—Provides miscellaneous notes about TAKE service call

■ Complete Parameter List—Gives a complete list of all the parameters and
their options for the TAKE service call

Call Syntax

12–2 PL/I Programmers Guide

Call Syntax
CALL T09FTAK (CPT_AFM);

Recommended AFM Parameters
The following list contains the recommend parameters for use with the TAKE
service. These parameters are set within the argument list of the AFM control
block. See the PL/I Structures for more information.

For a complete list of optional parameters, see Complete Parameter List.

Parameters Description

AFMTOKEN Required session token specifies which session that the current
task wishes to take control over.

AFMVERS Version number should be set to ACMVERSN (binary 2).

Usage Example
In this example, a subset of the actual statements required is shown to emphasize
the use of a TAKE call. In the example, a data processing transaction retrieves the
ACM, copies ACMTOKEN to the AFMTOKEN field, issues the TAKE service to
take control of the session represented in the ACMTOKEN field. The return code
is checked to determine TAKE service completion status.

Note: The statements needed for the TAKE service appear in bold.

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FTAK)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (CPTPRT,MSGPRT) POINTER;
DCL 1 CPT_ACM,
 %INCLUDE SYSLIB(T09KPACM);
DCL 1 CPT_AFM,
 %INCLUDE SYSLIB(T09KPAFM);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
%INCLUDE T09KPCON;
 /*

Parameter Values Returned in the AFM

TAKE Service 12–3

 Retrieve arguments
 */
 CICS RETRIEVE FROM(CPT_ACM) LENGTH(STG(CPT_ACM));
 AFMTOKEN = ACMTOKEN;
 /*
 CPT TAKE Facility Management service request
 */
 CALL T09FTAK (CPT_AFM);
 IF AFMRTNCD ^= 0
 THEN DO;
 /*
 Process and log TAKE error
 Terminate transaction
 */
 END;
 /*
 Application and CPT Data Transfer (SEND/RECV) service request
 *
 /*
 CPT Connection Release service request
 */.
 /*
 Terminate transaction
 */
 EXEC CICS RETURN;

Parameter Values Returned in the AFM
After the TAKE call returns control to your application program, the following
fields are propagated with the call’s resultant information. These updated values
are passed back to the application in the AFM control block.

Parameters Description

AFMDGNCD Diagnostic code.

AFMRTNCD Return code.

PL/I Structures

12–4 PL/I Programmers Guide

PL/I Structures
Sample PL/I structures are provided in the distributed software and are
available to you in cpthlq.T09MAC. Variable field names contained in the
distributed samples and the examples in this guide refer to these structures.

T09KPAFM PL/I structure name for the AFM. For detailed information
and a sample copy of the PL/I structure, see AFM:
Argument for Facility Management Used by the GIVE and
TAKE Services Service section in appendix “Control Block
Layouts.”

 Note: An excerpt of the PL/I constants that apply to AFM
calls immediately follows the AFM in the appendix.

T09KPCON The PL/I structire name for PL/I constants that apply to
the various service calls. For detailed information and a
sample copy of the PL/I copybook see T09KPCON: PL/I
Call Constants Copybook section of the appendix “Control
Block Layouts”

 Sample Programs
Sample PL/I source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PPSV2 TCP Server 2 program is a multithreaded server using the Listen
tool.

Completion Information

TAKE Service 12–5

Completion Information
The TAKE service completes normally when the task takes control of the session
associated with the token passed from the AFMTOKEN field.

On normal return to the application program, the general return code in
AFMRTNCD is set to zero (CPTIRCOK).

If the TAKE service completes abnormally, then some resources associated with
this connection cannot be successfully transferred from one task to another. The
general return code (AFMRTNCD) in register 15 and the diagnostic code
(AFMDGNCD) in register zero indicate the nature of the failure.

Return Codes
The TAKE service returns codes indicating the results of the execution. These
values are in the AFMRTNCD and the AFMDGNCD.

Structure T09KPRCS contains equates and descriptions for the possible return
codes. T09KPRCS is available in the distributed software in cpthlq.T09MAC. See
the appendix “Return Codes” for a sample copy of the T09KPRCS structure.

The following table lists the return codes that can apply to the TAKE call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed
successfully.

17 11 No CPTEVRSN Control block version number
not supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

34 22 No CPTENAPI API not fully available; retry.

40 28 No CPTETERM TCPIP is terminating.

Usage Notes

12–6 PL/I Programmers Guide

Decimal Hex Diagnostic
Code

Variable Description

254 FE Is abend
code

CPTABEND Abnormal termination.
Note: The diagnostic code is
the abnormal termination code,
which is normally a CICS
abend code, but can also be in
the “Abend Codes” chapter of
the Message Guide.

255 FF No CPTEOTHR Other error.

Usage Notes
The TAKE service acquires ownership of a connection from one task to another.
This service is non-blocking and does not affect any pending transport provider
data transfer requests. The association established by the TAKE service lets the
Unicenter SOLVE:CPT properly manage resources during task termination. This
ability to GIVE and TAKE ownership of connections offers a range of
programming options, while still providing Unicenter SOLVE:CPT with resource
management capabilities.

The TAKE service requires the application to set the AFM version number to
ACMVERSN (binary 2) and AFMTOKEN token fields. No other AFM fields are
referenced.

When a connection is established there are internal Unicenter SOLVE:CPT
resources associated with that connection. Unicenter SOLVE:CPT is responsible
for proper clean up of these resources on task or transaction termination.
These resources include storage allocated by Unicenter SOLVE:CPT, the API, and
the transport provider storage.

The GIVE and TAKE services are all about proper resource cleanup. For a
Unicenter Solve:CPT token (connection) to be properly passed to another
transaction, it must first be GIVEn to release ownership. The receiving
transaction must then TAKE the connection before using the connection.

Important! As noted in the GIVE service, if a transaction does not GIVE the token
before it performs an EXEC CICS RETURN then the CICS TRUE end of task exit will
cleanup all resources including closing down the connection. Therefore, if you have not
GIVEn your token, the next transaction will not be able to use the connection because it
will be gone; already be closed. So, a TAKE will fail. As with the GIVE, as the next user
of the connection you must use a TAKE to establish yourself as the owner. By doing the
TAKE, you avoid possibilities of your connection being accidentally cleaned up.

Usage Notes

TAKE Service 12–7

A server application is a good example of how the TAKE service benefits a user
application. A listening task issues the GIVE service and starts a new transaction
to handle data transfer. The data transfer transaction then takes the connection.
This sequence prevents a connection from being closed (implicitly by the
Unicenter SOLVE:CPT task termination exit) if the server application terminates.
However, if the data transfer transaction terminates without issuing an explicit
close (Unicenter SOLVE:CPT CLOSE service) an implicit close is scheduled and
resource management is handled by the Unicenter SOLVE:CPT task termination
exit.

Additionally, an implicit TAKE facility is implemented with the SEND,
RECEIVE, and TRANSLATE services. Any task that issues a SEND, RECEIVE, or
TRANSLATE service gets control of the connection and associated resources. We
recommend that you issue TAKE to avoid having a GIVE connection not
associated with any transactions. Ownership of a connection and resources
provide for clean-up processing during abnormal termination.

The AFMVERS version number indicates the Unicenter SOLVE:CPT release level
in which this user application program is written. This required field must be set
to ACMVERSN (binary 2) and is validated by the TAKE service before
processing the request.

The AFMFUNC function code indicates the Unicenter SOLVE:CPT callable
service ID. The field is not initialized by a user application program and has little
value to the application except for dump analysis. The function code identifies
and maps an argument list with the error or trace log and dump analysis.

The token AFMTOKEN indicates the connection and internal resources to be
processed by the TAKE service. This is a required field and is validated by the
TAKE service.

The AFMOPTNS field specifies TAKE service processing control options, and
provides a mechanism for event notification on return to the application
program. Currently, this field is not used by application programs.

Complete Parameter List

12–8 PL/I Programmers Guide

Complete Parameter List
AFMCOMMA Reserved for future use.

AFMCOMML Reserved for future use.

AFMDGNCD Diagnostic code. Indicates the diagnostic code received by the TAKE service for a
transport provider request and is not set by the TAKE service.

Default: None.

AFMFUNC Function code. Indicates the function or callable service ID requested by the
application program. This field should not be set by the application, but rather is
initialized by the TRUE interface stub program.

Default: None.

AFMOPTNS Option byte.

AFMOPT_COM Reserved for future use.

AFMOPT_DEQ Reserved for future use.

AFMOPT_ENQ Reserved for future use.

AFMOPT_SEL Informs the GIVE service to pass this token to the
SELECT Tool. Not used by the TAKE service.

Default: None.

AFMMSOCK Unused parameter.

AFMNTRAN Transaction ID. Not used by the TAKE service

AFMRTNCD Return code. Indicates the return code set by the TAKE service. This value is also
returned in register 15 and indicates the success or failure of the service.

AFMTOKEN Required session token specifies which session that the current task wishes to
take control over.

Default: None.

AFMVERS Required version number. Indicates the Unicenter SOLVE:CPT version number
of the argument list used by the calling program.

Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

TRANSLATE Service 13–1

Chapter

13 TRANSLATE Service

The TRANSLATE service translates data between EBCDIC and ASCII character
sets. Unicenter SOLVE:CPT is customized with a default translation table;
however, applications can override the default. The TRANSLATE service does
not affect an active connection nor issue any transport provider requests.

To invoke the TRANSLATE service, a user application is required to first build
an Argument for Data Translation (AXL) and then to issue a call to the
TRANSLATE routine. The AXL is required to contain the version number,
connection token, user buffer address and length, and type or direction of
translation requested. Additional arguments for application specific translation
tables are supported. When the TRANSLATE service completes, the buffer
contents are converted into the corresponding characters and a return code is
generated indicating the status of the request.

This chapter discusses the following topics:

■ Call Syntax—Shows syntax of the TRANSLATE call

■ Recommended AXL Parameters—Lists the parameters normally used and
recommended for the TRANSLATE service call

■ Usage Example—Provides a sample program shell using the TRANSLATE
service call

■ Custom Translation Table Usage Notes—Provides information on how to
configure and use a custom translation table for your environment

■ Parameter Values Returned in the AXL—Lists the fields that are updated in
the AXL control block upon return from the TRANSLATE service call

■ PL/I Structures—Lists information about the distributed sample PL/I
structures used by the TRANSLATE service call

■ Sample Programs—Lists and describes the distributed sample PL/I
programs that use the TRANSLATE service call along with other service calls

■ Complete Parameter List—Lists all of the parameters and options of those
parameters for the TRANSLATE service call

■ Return Codes—Lists the return codes that can apply to the TRANSLATE
service call

Call Syntax

13–2 PL/I Programmers Guide

■ Usage Notes—Provides miscellaneous notes about the TRANSLATE service
call

■ Complete Parameter List—Lists all of the parameters and options of those
parameters for the TRANSLATE service call

Call Syntax
CALL T09FXLAT (CPT_AXL);

Recommended AXL Parameters
The following list contains the recommended parameters for use with the
TRANSLATE service. These parameters are set within the AXL control block. See
1PL/I for sample information.

For a complete list of optional parameters, see the Complete Parameter List.

Parameter Description

AXLXTYPE Specify translation type or direction, set to:
AXLTATOE Indicates ASCII to EBCDIC translation.
AXLTETOA Indicates EBCDIC to ASCII translation.

AXLSADDR Set to buffer address of data to be translated.

AXLSLENG Set to length of data to be translated.

AXLTABLE Optionally change translation table by setting this field to the
address of user translation table.

AXLTOKEN Connection or endpoint token.

AXLVERS The version should be set to two (2).

Usage Example

TRANSLATE Service 13–3

Usage Example
In these examples, subsets of the actual statements required is shown to
emphasize the use of a TRANSLATE call. For a reference to a more complete
sample, see Sample Programs.

Two typical examples are shown:

■ Inbound Translation Example—Translation from ASCII to EBCDIC

■ Outbound Translation Example—Translation from EBCDIC to ASCII

Inbound Translation Example

In this example, the application has received data from a remote ASCII host. It
sets flag AXLTATOE to translate the network data from ASCII to EBCDIC. The
token AXLTOKEN, data buffer address AXLSADDR, and length to translate,
AXLSLENG are set in the AXL. The default translation mode of SBCS is selected.

The application checks the AXLRTNCD return code to determine the
TRANSLATE service completion status.

Note: Relevant parameters in the example are in bold:

SAMP2: PROCEDURE OPTIONS (MAIN);
DCL (T09FXLA)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (CPTPRT,MSGPRT) POINTER;
DCL 1 CPT_AXL,
 %INCLUDE SYSLIB(T09KPAXL);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL DATA BIT (1) INIT ('1'B);
DCL MESSAGE CHAR (80);
%INCLUDE T09KPCON;
 /*
 CPT Connection Management service request
 */
 ADTTOKEN = ACMTOKEN;
 DO WHILE (DATA);
 /*
 CPT RECEIVE service request
 */
 /*
 CPT TRANSLATE service request
 */
 AXLBUFFA = ADTBUFFA;
 AXLBUFFL = ADTBUFFL;
 AXLXTYPE = AXLXTYPE_ATOE;
 CALL T09FXLAT (CPT_AXL);
 IF AXLRTNCD ^= 0
 THEN DO;
 /*
 Process and log TRANSLATE error
 Terminate WHILE condition
 */
 END;

Usage Example

13–4 PL/I Programmers Guide

 /*
 Application to process data
 */
 END;
 /*
 CPT Connection Release service request
 */
 /*
 Terminate transaction
 */
 EXEC CICS RETURN;

Outbound Translation Example

In this example, the application needs to send data to a remote ASCII host. It
translates data from EBCDIC to ASCII by setting the AXLTETOA flag. The token
AXLTOKEN, data buffer address AXLSADDR, and length to translate,
AXLSLENG are set in the AXL. The default translation mode of SBCS is selected.

The application checks the AXLRTNCD return code to determine the
TRANSLATE service completion status.

Note: Relevant parameters in the example are in bold:

SAMP1: PROCEDURE OPTIONS (MAIN);
DCL (T09FXLA)
 ENTRY OPTIONS (INTER ASSEMBLER);
DCL (CPTPRT,MSGPRT) POINTER;
DCL 1 CPT_AXL,
 %INCLUDE SYSLIB(T09KPAXL);
DCL 1 CPT_RCS,
 %INCLUDE SYSLIB(T09KPRCS);
DCL DATA BIT (1) INTI ('1'B);
DCL MESSAGE CHAR (80)
 INIT('WELCOME TO THE CICS/API PROGRAMMING WORLD');
%INCLUDE T09KPCON;
 /*
 CPT Connection Management service request
 */
 ADTTOKEN = ACMTOKEN;
 DO WHILE (DATA);
 /*
 Application to process data
 */
 /*
 CPT TRANSLATE service request
 */
 AXLBUFFA = ADDR(BUFFER);
 AXLBUFFL = 80;
 AXLXTYPE = AXLXTYPE_ETOA;
 CALL T09FXLAT (CPT_AXL);
 IF AXLRTNCD ^= 0
 THEN DO;
 /*
 Process and log TRANSLATE error
 Terminate WHILE condition
 */
 END;
 /*
 CPT SEND service request

Custom Translation Table Usage Notes

TRANSLATE Service 13–5

 */
 END;
 /*
 CPT Connection Release service request
 */
 /*
 Terminate transaction
 */
 EXEC CICS RETURN;

Custom Translation Table Usage Notes
Unicenter SOLVE:CPT fully supports customizing translation tables to fit your
environment. For information and customization instructions, see the
“Translation Tables” chapter in the Administrator Guide.

Once you have customized a translation table for your environment, you still
need to tell Unicenter SOLVE:CPT that you want to use it.

Set the Default
Translation Table

Configure the most heavily used the translation table to be the default
Unicenter SOLVE:CPT’s translation table.

To do this, your Unicenter SOLVE:CPT administrator needs to change the
TRANSTBL parameter on the T09MCICS macro in the configuration table
T09CONxx to the name of your customized translation table.

For information on changing the default name, see the T09MCICS macro section
of the “Configuration Reference” chapter in the Administrator Guide.

The new translation table must be in CICS’ DFHRPL concatenation in order to be
loaded by Unicenter SOLVE:CPT.

Overriding the
Default Translation
Table

This method uses a translation table other than your Unicenter SOLVE:CPT
system-wide default.

To override the default translation table:

1. See the “Translation Tables” chapter of the Administrator Guide. Customize a
translation table.

2. Move the table from Step 1 into a library in the CICS DFHRPL concatenation.

3. Issue the following command in your program to load the table:
EXEC CICS LOAD
 PROGRAM(mytable)
 SET(ptr-ref)
 NOHANDLE

4. Copy the address ptr-ref to the AXLTABLE parameter.

5. Call the Solve TRANSLATE service.

Parameter Values Returned in the AXL

13–6 PL/I Programmers Guide

6. Issue the following command in your program to release the storage for the
table.
EXEC CICS RELEASE
 PROGRAM(mytable)
 NOHANDLE

For performance or efficiency reasons, if you use the table for multiple
transactions, you should consider using the HOLD keyword on the EXEC CICS
LOAD command. You will need to store the address of the table for others to
use. You have to manage the EXEC CICS RELEASE carefully so that storage
cleanup is eventually done.

Parameter Values Returned in the AXL
After the TRANSLATE call returns control to your application program, the
following fields are propagated with valid completion information. These
updated values are passed back to the application in the AXL control block.

Field Name Description

AXLDGNCD Diagnostic code.

AXLRTNCD Return code.

PL/I Structures
Sample PL/I structures are provided in the distributed software and are
available to you in cpthlq.T09MAC. Variable field names contained in the
distributed samples and the examples in this guide refer to these structures.

T09KPAXL PL/I structure name for the AXL. For detailed information
and a sample copy of the PL/I structure, see the AXL:
Argument for TRANSLATE Used by the TRANSLATE
Service section in the “Control Block Layouts” appendix.

All PL/I constants that apply to AXL calls are imbedded in the AXL structure
sample.

Sample Programs

TRANSLATE Service 13–7

Sample Programs
Sample PL/I source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PPCLU UDP client program

T09PPCL1 Client Application sends typed in data to the server
waiting for the information to be echoed back from the
server.

T09PPCL2 Client Application to send an internal message using
either the FULL, SEP or LL to be echoed back by the
server.

Completion Information
The TRANSLATE service completes normally when the data is translated into
the corresponding character set representation.

On normal return to the application program, the general return code in
AXLRTNCD is set to zero (CPTIRCOK). The diagnostic code in AXLDGNCD is
set to zero.

If the TRANSLATE service completes abnormally, an error associated with
translation occurred. The general return code (AXLRTNCD) in register 15 and
the diagnostic code (AXLDGNCD) in register zero indicate the nature of the
failure.

Return Codes

13–8 PL/I Programmers Guide

Return Codes
The TRANSLATE service returns a code in registers R15 and R0 indicating the
results of the execution. These values are in the AXLRTNCD (R15) and
AXLDGNCD (R0).

Structure T09KPRCS contains equates and descriptions for the possible return
codes. T09KPRCS is available in the distributed software in cpthlq.T09MAC. See
the appendix “Return Codes” for a sample copy of the T09KPRCS structure.

The following table lists the return codes that can apply to the TRANSLATE call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

17 11 No CPTEVRSN Control block version number not
supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

21 15 No CPTEBUFF Buffer address or length invalid.

22 16 No CPTECHAR Translate character set is invalid.

23 17 No CPTEMODE Translate mode specification is
invalid.

25 19 No CPTETABL Specified table is not correct.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

40 28 Yes CPTETERM Environment is being terminated.

254 FE Is Abend
Code

CPTABEND Abnormal termination.
Note: The diagnostic code is the
abnormal termination code that is
normally a CICS abend code, but
can also be in the “Abend Codes”
chapter of the Message Guide.

255 FF No CPTEOTHR Other error.

Usage Notes

TRANSLATE Service 13–9

Usage Notes
The TRANSLATE service translates data between EBCDIC and ASCII.
The requirement for translation is application dependent.

The version number, AXLVERS, indicates the Unicenter SOLVE:CPT release
level in which this user application program is written. This required field must
be set to binary two(2) and is validated by the TRANSLATE service before
processing the request.

The function code, AXLFUNC, indicates the Unicenter SOLVE:CPT callable
service ID. The field is not initialized by a user application program and has little
value to the application except for dump analysis. The function code can identify
and map an argument list with the error or trace log and dump analysis.

The token, AXLTOKEN, indicates the connection associated with this translation
request. This field is required; however, no transport provider requests are
issued. The token is used for internal logging support requirements. This
required field is validated by the TRANSLATE service before processing the
request.

The AXLXMODE field specifies the character set mode. It sets single, double or
mixed character set translation. Currently, only single-byte character set
translation, which is the default, is supported.

The AXLXTYPE field specifies the translation direction. This required field
indicates EBCDIC to ASCII, or ASCII to EBCDIC. Additionally, characters can be
transacted into the corresponding uppercase values.

Complete Parameter List

13–10 PL/I Programmers Guide

Complete Parameter List
AXLDGNCD Diagnostic code. Indicates the diagnostic code set by the service request. This

value specifies a unique number associated with the return code and identifies
the translation error.

Default: None.

AXLFUNC Function code. Indicates the function or callable service ID requested by the
application program. This field should not be set by the application, but is
initialized by the TRUE interface stub.

Default: None.

AXLXTYPE Specifies TRANSLATE service translation type or direction.

AXLXTYPE_ATOE Indicates ASCII to EBCDIC translation.

AXLXTYPE_AUPC Indicates ASCII to uppercase ASCII translation.

AXLXTYPE_ETOA Indicates EBCDIC to ASCII translation.

AXLXTYPE_EUPC Indicates EBCDIC to uppercase EBCDIC translation.

Default: None.

AXLRTNCD Return code. Indicates the return code set by the TRANSLATE service. This
value is also returned in register 15 and indicates the success or failure of the
service.

Default: None.

AXLSADDR Required. Source text buffer address. Indicates the address of the user data to
translate. It is a contiguous segment of storage accessible to the user task. The
storage area can be aligned on any boundary convenient to the application
program.

Default: None.

AXLSLENG Required. Source text buffer length. Indicates the length, in bytes of user data in
the storage area, as identified by the AXLSADDR field.

Note: A zero value causes the request to fail.

Default: None.

Complete Parameter List

TRANSLATE Service 13–11

AXLTABLE Address of user translation table. See Custom Translation Table Usage Notes for
notes on usage of a customized table.

Default: None.

AXLTOKEN Connection token. Specifies the token, which represents either a TCP or UDP
connection or UDP.

Default: None.

AXLVERS Required. Version number indicates the Unicenter SOLVE:CPT version number
of the argument used by the calling program.

Note: Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

AXLXMODE Specifies TRANSLATE service translation mode or character set.

AXLXMODE_DBCS Indicates double-byte character set translation.

 Note: This option is currently not supported.

AXLXMODE_MIXD Indicates mixed mode character set translation. This mode
specifies single- and double-byte translation.

 Note: This option is currently not supported.

AXLXMODE_NUMS Indicates numeric set translation.

 Note: This option is currently not supported.

AXLXMODE_SBCS Indicates single-byte character set translation.

Default: AXLXMODE_SBCS.

Return Codes A–1

Appendix

A Return Codes

This appendix provides you with information about the Unicenter SOLVE:CPT
return codes.

The Return Code table below provides you with:

■ A description of the meaning of the return code

■ The decimal and hexadecimal values of the return code

■ A variable field name from the PL/I structure

Immediately following the RC table is the T09KPRCS PL/I structure. It contains
convenient variable names for you to use in your application program. This
structure is used by all the provided application programming samples. You will
find the T09KPRCS structure in the cpthlq.T09MAC distributed library.

Return Codes

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

1 1 No CPTWTIMEO Timed receive call timed out.

4 4 No CPTWNEGO System limits applied to buffer
or Queue sizes.

6 6 Yes CPTWBLCK A non-blocking call to a service
detected a wait condition.

10 A No CPTWNSEP Separator types receive found no
separator characters.

15 0F Yes CPTWEXCP Other warning.

17 11 No CPTEVRSN Control block version number
not supported.

Return Codes

A–2 PL/I Programmers Guide

Decimal Hex Diagnostic
Code

Variable Description

18 12 Yes CPTECONN Required Parameter not passed.
E.g. host, port, …

19 13 No CPTEPROT Specified protocol not
supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

21 15 No CPTEBUFF Buffer address and/or length
invalid.

22 16 No CPTECHAR Translate character set is invalid.

23 17 No CPTEMODE Translate mode specification is
invalid.

24 18 Yes CPTECOPT Close mode specification is
invalid.

25 19 Yes CPTETABL Specified translate table not
correct.

26 1A Yes CPTETRID Designated transaction ID
cannot start.

27 1B No CPTETIME Receive timeout value not
specified.

28 1C No CPTESEP# Receive type separator number
of separator characters equal to 1
or 2.

29 1D No CPTEOPTN Receive options selected is a
combination which is invalid.

30 1E No CPTEOPRL Receive option not supported by
transport carrier.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

33 21 Yes CPTEPBSY Selected port is busy with active
server.

34 22 No CPTENAPI API not fully available; retry.

35 23 Yes CPTENAVL Requested facility is not
available.

36 24 Yes CPTEDRAN TCP/IP environment is
terminating.

Return Codes

Return Codes A–3

Decimal Hex Diagnostic
Code

Variable Description

37 25 No CPTESLCT Select tool transaction is not
running.

38 26 No CPTERCVT Receive tool not defined in the
T09CONxx CPT configuration
table.

40 28 Yes CPTETERM Environment is being
terminated.

46 2E No CPTESCTY Session was terminated by the
security exit.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

138 8A No CPTEWECB ECB already being waited on

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination.
The diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

PL/I Structure T09KPRCS

A–4 PL/I Programmers Guide

Diagnostic Code Field

The diagnostic code field depends on the error event recorded in the Unicenter
SOLVE:CPT return code field. The diagnostic code field could be CICS abend
code, ERRNO, or other value depending on the Unicenter SOLVE:CPT return
code failure.

When a Unicenter SOLVE:CPT API call fails, the product prefers to return the
return code and diagnostic code field pair from the first error event that occurred
during the Unicenter SOLVE:CPT API call.

An API system Error return code (ERRNO) can be mapped back into a Solve:CPT
return code when an EZASOKET (or EZACICAL) error occurs during processing
of a Unicenter SOLVE:CPT API call. If the first error on a Unicenter SOLVE:CPT
API call is an EZASOKET (or EZACICAL) error then the Unicenter SOLVE:CPT
return code contains the TCP API system Error return code (ERRNO). To
determine the meaning of the ERRNO number, please refer to IBM's
Communication Server IP API Guide or IBM’s Communication Server IP CICS Sockets
Guide or equivalent.

PL/I Structure T09KPRCS

 DCL 1 TCPIP_RCS,
 3 CPTERCNT FIXED BIN (31) INIT(40),
 /***/
 /* EXCEPTION CODES POSTED IN RETURN CODE ARGUMENT FIELDS */
 /*---*/
 3 CPTIRCOK FIXED BIN (31) INIT(0),
 3 CPTCRCOK CHAR (52)
 INIT('REQUEST COMPLETED SUCCESSFULLY'),
 3 CPTWTIMO FIXED BIN (31) INIT(1),
 3 CPTCTIMO CHAR (52)
 INIT('TIMED RECEIVE SERVICE CALL TIMED OUT'),
 3 CPTWNEGO FIXED BIN (31) INIT(4),
 3 CPTCNEGO CHAR (52)
 INIT('LESS BUFFER SPACE NEGOTIATED'),
 3 CPTWBLCK FIXED BIN (31) INIT(6),
 3 CPTCBLCK CHAR (52)
 INIT('RECEIVE WOULD BLOCK-NO DATA AVAILABLE'),
 3 CPTWNEOM FIXED BIN (31) INIT(8),
 3 CPTCNEOM CHAR (52)
 INIT('INCOMPLETE DATAGRAM'),
 3 CPTWNSEP FIXED BIN (31) INIT(10),
 3 CPTCNSEP CHAR (52)
 INIT('NO SEPARATOR CHARACTORS FOUND'),
 3 CPTWEXCP FIXED BIN (31) INIT(15),
 3 CPTCEXCP CHAR (52)
 INIT('INDEFINITE WARNING ISSUED'),

PL/I Structure T09KPRCS

Return Codes A–5

 /***/
 /* CONTROL BLOCK ARGUMENT ERRORS */
 /*---*/
 3 CPTEVRSN FIXED BIN (31) INIT(17),
 3 CPTCVRSN CHAR (52)
 INIT('CONTROL BLOCK INCOMPATIBLE WITH RELEASE'),
 3 CPTECONN FIXED BIN (31) INIT(18),
 3 CPTCCONN CHAR (52)
 INIT('ERROR IN HOST/PORT/SERVICE SPECIFICATION'),
 3 CPTEPROT FIXED BIN (31) INIT(19),
 3 CPTCPROT CHAR (52)
 INIT('SPECIFIED PROTOCOL UNKNOWN/INCOMPATIBLE'),
 3 CPTETOKN FIXED BIN (31) INIT(20),
 3 CPTCTOKN CHAR (52)
 INIT('SPECIFIED TOKEN IS NOT VALID'),
 3 CPTEBUFF FIXED BIN (31) INIT(21),
 3 CPTCBUFF CHAR (52)
 INIT('ERROR DETECTED IN BUFFER ADDRESS/LENGTH'),
 3 CPTECHAR FIXED BIN (31) INIT(22),
 3 CPTCCHAR CHAR (52)
 INIT('REQUESTED TRANSLATE CHARACTER SET UNDEFINED'),
 3 CPTEMODE FIXED BIN (31) INIT(23),
 3 CPTCMODE CHAR (52)
 INIT('REQUESTED TRANSLATE MODE UNDEFINED'),
 3 CPTECOPT FIXED BIN (31) INIT(24),
 3 CPTCCOPT CHAR (52)
 INIT('REQUESTED CLOSE MODE UNDEFINED'),
 3 CPTETABL FIXED BIN (31) INIT(25),
 3 CPTCTABL CHAR (52)
 INIT('REQUESTED TRANSLATE TABLE NON-CONFORMING'),
 3 CPTETRID FIXED BIN (31) INIT(26),
 3 CPTCTRID CHAR (52)
 INIT('REQUESTED TRANSACTION NOT AVAILABLE'),
 3 CPTETIME FIXED BIN (31) INIT(27),
 3 CPTCTIME CHAR (52)
 INIT('RECEIVE TIMEOUT VALUE NOT SPECIFIED'),
 3 CPTESEPC FIXED BIN (31) INIT(28),
 3 CPTCSEPC CHAR (52)
 INIT('NUMBER OF SEPARATOR CHARACTERS NOT SPECIFIED'),
 3 CPTEOPTN FIXED BIN (31) INIT(29),
 3 CPTCOPTN CHAR (52)
 INIT('SPECIFIED RECEIVE OPTIONS IN CONFLICT'),
 3 CPTEOPRL FIXED BIN (31) INIT(30),
 3 CPTCOPRL CHAR (52)
 INIT('OPTION NOT SUPPORTED BY TRANSPORT PROVIDER'),
 3 CPTEFRMT FIXED BIN (31) INIT(31),
 3 CPTCFRMT CHAR (52)
 INIT('INDEFINITE SPECIFICATION ERROR DETECTED'),

PL/I Structure T09KPRCS

A–6 PL/I Programmers Guide

 /***/
 /* LOCAL ENVIRONMENT ERRORS */
 /*---*/
 3 CPTEPBSY FIXED BIN (31) INIT(33),
 3 CPTCPBSY CHAR (52)
 INIT('REQUESTED LISTEN PORT ALREADY BEING SERVED'),
 3 CPTENAPI FIXED BIN (31) INIT(34),
 3 CPTCNAPI CHAR (52)
 INIT('CPT INTERFACE NOT INITIALIZED - PLEASE RETRY'),
 3 CPTENAVL FIXED BIN (31) INIT(35),
 3 CPTCNAVL CHAR (52)
 INIT('REQUESTED FACILITY UNAVAILABLE'),
 3 CPTEDRAN FIXED BIN (31) INIT(36),
 3 CPTCDRAN CHAR (52)
 INIT('CANNOT HANDLE REQUEST - ENVIRONMENT DRAINING'),
 3 CPTESLCT FIXED BIN (31) INIT(37),
 3 CPTCSLCT CHAR (52)
 INIT('CANNOT HANDLE REQUEST - SELECT TOOL UNAVAILABLE'),
 3 CPTERCVT FIXED BIN (31) INIT(38),
 3 CPTCRCVT CHAR (52)
 INIT('CANNOT HANDLE REQUEST - RECEIVE TOOL UNDEFINED'),
 3 CPTETERM FIXED BIN (31) INIT(40),
 3 CPTCTERM CHAR (52)
 INIT('CANNOT HANDLE REQUEST - ENVIRONMENT TERMINATING'),
 3 CPTESCTY FIXED BIN (31) INIT(46),
 3 CPTCSCTY CHAR (52)
 INIT('CONNECTION REJECTED BY SECURITY EXIT'),
 3 CPTEENVR FIXED BIN (31) INIT(47),
 3 CPTCENVR CHAR (52)
 INIT('INDEFINITE ERROR DETECTED IN THE ENVIRONMENT'),
 /***/
 /* CONNECTION EXCEPTIONS */
 /*---*/
 3 CPTERLSE FIXED BIN (31) INIT(65),
 3 CPTCRLSE CHAR (52)
 INIT('ORDERLY RELEASE OF CONNECTION INITIATED'),
 3 CPTEDISC FIXED BIN (31) INIT(68),
 3 CPTCDISC CHAR (52)
 INIT('REMOTE CONNECTION TERMINATED OR NOT AVAILABLE'),
 3 CPTEPRGE FIXED BIN (31) INIT(72),
 3 CPTCPRGE CHAR (52)
 INIT('CONNECTION PURGED'),
 3 CPTEINTG FIXED BIN (31) INIT(79),
 3 CPTCINTG CHAR (52)
 INIT('INDEFINITE CONNECTION ERROR DETECTED'),
 /***/
 /* OTHER EXCEPTIONS */
 /*---*/
 3 CPTEPROC FIXED BIN (31) INIT(143),
 3 CPTCPROC CHAR (52)
 INIT('STATE ERROR - REQUEST CANNOT BE COMPLETED'),
 3 CPTABEND FIXED BIN (31) INIT(254),
 3 CPTCBEND CHAR (52)
 INIT('CPT INTERFACE IS NOT AVAILABLE'),
 3 CPTEOTHR FIXED BIN (31) INIT(255),
 3 CPTCOTHR CHAR (52)
 INIT('INDEFINITE SEVERE ERROR DETECTED');

Control Block Layouts B–1

Appendix

B Control Block Layouts

This appendix describes these Unicenter SOLVE:CPT control blocks.

The following topics are discussed in this appendix:

■ T09KPCON: PL/I Call Constants Structure

■ ACL: Argument for CLose Used by the CLOSE API Service

■ ACM: Argument for Connection Management Used by the CONNECT and
LISTEN API Services

■ ADT: Argument for Data Transfer Used by RECIEVE, SEND, RECVFROM,
and SENDTO Services

■ AFM: Argument for Facility Management Used by the GIVE and TAKE
Services

■ AFT: Argument for File Transfer Used by the FTP Client Service Call

■ AXL: Argument for Data Translation Used by the Translate API Service

■ Client Data Listener Transaction Start

■ Connection Time Security Program Control Block

■ Parameter List Passed to T09MTRAN Initiated Transactions

■ LCA0000 and CFG0000 Control Blocks

T09KPCON: PL/I Call Constants Structure
The following is a sample of structure member T09KPCON located in the
cpthlq.T09MAC distributed library. Variable field names contained in the
distributed samples and the examples in this guide refer to fields contained in
this structure.

DCL (/*--*/
 /* RETURN CODE VALUES */
 /*--*/
 RCOKAY FIXED BIN (31) INIT (0), /* NORMAL RETURN */
 DGOKAY FIXED BIN (31) INIT (0), /* NO DIAGNOSTICS */

 /*--*/
 /* CONTROL BLOCK VERSION NUMBER */
 /*--*/

T09KPCON: PL/I Call Constants Structure

B–2 PL/I Programmers Guide

 ACMVERSN FIXED BIN (15) INIT (2), /* ACM BLOCK VERSN */

 /*--*/
 /* STATISTICS LOG REQUESTS */
 /*--*/
 ACMSTATS_CONN BIT (8) INIT('00000001'B), /* CONNECTIONS */
 ACMSTATS_TERM BIT (8) INIT('00000010'B), /* TRMNATION STATS */

 /*--*/
 /* ACM OPTIONS */
 /*--*/
 ACMOPTN1_SYNC BIT (8) INIT('00000001'B), /* LISTEN SYNCPOINT*/
 ACMOPTN1_LTRAN BIT (8) INIT('00000010'B), /* DYNAM TRANSACTN */
 ACMOPTN1_NODNR BIT (8) INIT('00000100'B), /* NO DNR NAMES */
 ACMOPTN1_NBLKO BIT (8) INIT('00001000'B), /* NON-BLOCK LISTEN*/
 ACMOPTN1_OTRAN BIT (8) INIT('01000000'B), /* OPT. XLATE */
 ACMOPTN1_CTRAN BIT (8) INIT('10000000'B), /* XLATE C/D */

 ACMOPTN2_CLEN BIT (8) INIT('00000001'B), /* CLIENT DATA LEN */
 ACMOPTN2_USRID BIT (8) INIT('00000010'B), /* USERID PRESENT */
 ACMOPTN2_SCTY BIT (8) INIT('00000100'B), /* SECURITY PRESENT*/
 ACMOPTN2_MRO BIT (8) INIT('00001000'B), /* LISTEN FOR MRO */

 /*--*/
 /* ADT OPTIONS */
 /*--*/
 ADTOPTN1_TYPSP BIT (8) INIT('00000001'B), /* RECD BY SEP CHAR*/
 ADTOPTN1_TYPLL BIT (8) INIT('00000010'B), /* RECD BY LL PFX */
 ADTOPTN1_BLCKS BIT (8) INIT('00000100'B), /* ICS BLOCK SEND */
 ADTOPTN1_TMPRT BIT (8) INIT('00001000'B), /* TIMED PART RECV */
 ADTOPTN1_TMRCV BIT (8) INIT('00010000'B), /* TIMED FULL RECV */
 ADTOPTN1_NBLKS BIT (8) INIT('00100000'B), /* NO BLOCK SEND */
 ADTOPTN1_NBLKR BIT (8) INIT('01000000'B), /* NO BLOCK RECV */
 ADTOPTN1_DODNR BIT (8) INIT('10000000'B), /* DO DNR FOR UDP */
 /* ADTOPTN2_RT100 ADTTIMEO IS EXPRESSED IN UNITS OF */
 /* 1/100 SECOND FOR RECV TIMEOUT */
 ADTOPTN2_RT100 BIT (8) INIT('00001000'B), /* 1/100 sec recv */
 ADTOPTN2_NQUE BIT (8) INIT('00010000'B), /* NO QUEUEING */
 ADTOPTN2_NWAIT BIT (8) INIT('00100000'B), /* NO WAIT-SEL TOOL*/
 ADTOPTN2_NOSTP BIT (8) INIT('01000000'B), /* NO STRIP LL/SEP */
 ADTOPTN2_VLIST BIT (8) INIT('10000000'B), /* VECTOR LIST */

 /*---*/
 /* ADTSTATS VALUES ARE THE SAME AS DEFINED FOR */
 /* THE ACM. THESE FIELDS CAN THUS BE SET TO ACM-CONSTANTS. */
 /*---*/

 /*--*/
 /* ADT SELECT VECTOR REQUESTS */
 /*--*/
 ADTSLCTR BIT (8) INIT('00000001'B), /* SELECT FOR READ */
 ADTSLCTW BIT (8) INIT('00000010'B), /* SELECT FOR WRIT */
 ADTSLCTE BIT (8) INIT('00000100'B), /* SELECT FOR EXCP */

 /*--*/
 /* TERMINATION TYPE REQUEST */
 /*--*/
 ACLOPT_ORDER BIT (8) INIT('00000000'B), /* ORDERLY RELEASE */
 ACLOPT_ABORT BIT (8) INIT('00000001'B), /* ABORTIVE STOP */
 ACLOPT_SHUT0 BIT (8) INIT('00000010'B), /* SHUTDOWN RECV */
 ACLOPT_SHUT1 BIT (8) INIT('00000100'B), /* SHUTDOWN SEND */
 ACLOPT_SHUT2 BIT (8) INIT('00001000'B), /* SHUTDOWN S AND R*/

T09KPCON: PL/I Call Constants Structure

Control Block Layouts B–3

 /*--*/
 /* GIVE/TAKE OPTIONS */
 /*--*/
 AFMOPT_DEQ BIT (8) INIT('10000000'B), /* DEQUEUE ONLY */
 AFMOPT_ENQ BIT (8) INIT('01000000'B), /* ENQUEUE ONLY */
 AFMOPT_SEL BIT (8) INIT('00100000'B), /* SELECT TOOL */

 /*--*/
 /* TRANSLATION TYPE REQUEST */
 /*--*/
 AXLXTYPE_ATOE BIT (8) INIT('00000001'B), /* ASCII-TO-EBCDIC */
 AXLXTYPE_ETOA BIT (8) INIT('00000010'B), /* EBCDIC-TO-ASCII */
 AXLXTYPE_AUPC BIT (8) INIT('00000100'B), /* A TO UPPERCASE A*/
 AXLXTYPE_EUPC BIT (8) INIT('00001000'B), /* E TO UPPERCASE E*/

 /*--*/
 /* CHARACTER SET MODE */
 /*--*/
 AXLXMODE_SBCS BIT (8) INIT('00000000'B), /* SINGLE BYTE C.S. */
 AXLXMODE_DBCS BIT (8) INIT('00000001'B), /* DOUBLE BYTE C.S. */
 AXLXMODE_MIXD BIT (8) INIT('00000010'B), /* MIXED SBCS/DBCS */
 AXLXMODE_NUMS BIT (8) INIT('00000100'B) /* NUMBER SET */
);

ACL: Argument for CLose Used by the CLOSE API Service

B–4 PL/I Programmers Guide

ACL: Argument for CLose Used by the CLOSE API Service
This section describes the Unicenter SOLVE:CPT Argument for CLose, the ACL.
The ACL is used by the CLOSE service to terminate TCP connections.

 It provides the following information:

■ An offset table of the ACL fields

■ An alphabetical list of ACL fields

■ A sample copy of the T09KPACL structure

■ CLOSE Associated Constants from Structure Sample Member T09KPCON

Note: The ACL control block is 28 bytes in length, which is x’1C’ in hexadecimal.
The space for this control block must be created by the application and mapped
to by the sample T09KPACL structure.

Offset Table
This table provides information from the T09KPACL structure member with
field descriptions.

Decimal Hex Type Length Name Description

0 (0) HALF
WORD

4 ACLVERS Version number.

2 (2) HALF
WORD

4 ACLFUNC Function code.

4 (4) ADDRESS 4 ACLTOKEN Token (CEP).

8 (8) ADDRESS 4 Reserved.

12 (C) FULL
WORD

4 Reserved.

16 (10) FULL
WORD

4 ACLRTNCD Return code.

20 (14) FULL
WORD

4 ACLDGNCD Diagnostic code.

27 (1B) BYTE 1 ACLOPTNS Termination Option
Code byte 1.

 ACLOPT_OR
DER

- Orderly release.

 1 ACLOPT_AB
ORT

- Abortive release.

ACL: Argument for CLose Used by the CLOSE API Service

Control Block Layouts B–5

Alphabetized Field Name Cross-Reference Table

This table is an alphabetized list of field names mapped to the offset within the
ACL control block.

Name Hex Offset Hex Value

ACLOPT_ABORT 1B 01

ACLDGNCD 14

ACLFUNC 2

ACLLEN 1C 1C

ACLOPTNS 18

ACLOPT_ORDER 1B 00

ACLTOKEN 4

ACLVERS 0

Sample Structure Member T09KPACL

The following is a sample of structure member T09KPACL located in the
cpthlq.T09MAC distributed library.

■ It contains the layout and field names for your use in your application
program

■ It is used by all the provided application programming samples

5 ACLVERS FIXED BIN (15) INIT (2), /* ACL BLOCK VERSION */
5 ACLFUNC FIXED BIN (15) INIT (0), /* FUNCTION CODE */
5 ACLTOKEN POINTER INIT(NULL), /* DATA XFER TOKEN */
5 ACLRSVD1 POINTER INIT(NULL), /* (RESERVED: IN USE) */
5 ACLRSVD2 FIXED BIN (31) INIT (0), /* (RESERVED: IN USE) */
5 ACLRTNCD FIXED BIN (31) INIT (0), /* RETURN CODE */
5 ACLDGNCD FIXED BIN (31) INIT (0), /* DIAGNOSTIC CODE */
5 ACLOPRSV CHAR (3) INIT(LOW(3)), /* RESERVED OPTIONS */
5 ACLOPTNS BIT (8) INIT('00000000'B), /* TERMINATION MODE */
5 ACLTIMEO FIXED BIN (15) INIT (0); /* LINGER TIME */

ACL: Argument for CLose Used by the CLOSE API Service

B–6 PL/I Programmers Guide

CLOSE Associated Constants from Structure Sample Member T09KPCON

The following is an excerpt from the T09KPCON structure with the fields that are
associated with the CLOSE call. Variable field names contained in the distributed
samples and the examples in this guide refer to this structure. This structure is
available to you in the distributed software in cpthlq.T09MAC. For detailed
information and a sample of the complete T09KPCON structure, see T09KPCON:
PL/I Call Constants Structure.

ACMVERSN FIXED BIN (15) INIT (2), /* ACM BLOCK VERSN */

 /*--*/
 /* TERMINATION TYPE REQUEST */
 /*--*/
ACLOPT_ORDER BIT (8) INIT('00000000'B), /* ORDERLY RELEASE */
ACLOPT_ABORT BIT (8) INIT('00000001'B), /* ABORTIVE STOP */
ACLOPT_SHUT0 BIT (8) INIT('00000010'B), /* SHUTDOWN RECV */
ACLOPT_SHUT1 BIT (8) INIT('00000100'B), /* SHUTDOWN SEND */
ACLOPT_SHUT2 BIT (8) INIT('00001000'B), /* SHUTDOWN S AND R*/

ACM: Argument for Connection Management Used by the CONNECT and LISTEN API Services

Control Block Layouts B–7

ACM: Argument for Connection Management Used by the
CONNECT and LISTEN API Services

This section describes the Unicenter SOLVE:CPT Argument for Connection
Management, the ACM. The ACM is used by the CONNECT and LISTEN
services to establish TCP connections.

 It provides the following information:

■ An offset table of the ACM fields

■ An alphabetical list of ACM fields

■ A sample copy of the T09KPACM structure

■ Connect/Listen associated constants from structure sample member
T09KPCON

Note: The ACM control block is 628 bytes in length, which is x’274’ in
hexadecimal. The space for this control block must be created by the application
and mapped to by the sample T09KPACM structure.

Offsets

This table provides information from the T09KPACM structure member with
field descriptions.

Decimal Hex Type Length Name Description

0 (0) HALF WORD 2 ACMVERS Version number.

2 (2) HALF WORD 2 ACMFUNC Function code.

4 (4) ADDRESS 4 ACMTOKEN Token (CEP).

8 (8) ADDRESS 4 (Reserved).

12 (C) FULL WORD 4 (Reserved).

16 (10) FULL WORD 4 ACMRTNCD Return code.

20 (14) FULL WORD 4 ACMDGNCD Diagnostic code.

24 (18) FULL WORD 4 ACMSTATS Statistic flags.

27 (1B) BYTE 1 Statistic flag byte 1.

 1 ACMSTATS_
CONN

- Connection
statistics.

 1. ACMSTATS_T
ERM

- Termination
statistics.

ACM: Argument for Connection Management Used by the CONNECT and LISTEN API Services

B–8 PL/I Programmers Guide

Decimal Hex Type Length Name Description

28 (1C) FULL WORD 4 ACMTRACE Trace flags.

32 (20) FULL WORD 4 ACMQSEND TSEND queue size.

36 (24) FULL WORD 4 ACMMSEND Maximum TSEND
TPL buffer size.

40 (28) FULL WORD 4 ACMQRECV TRECV queue size.

44 (2C) FULL WORD 4 ACMMRECV Maximum TRECV
.TPL buffer size.

48 (30) FULL WORD 4 ACMTLSTN Listen Token.

52 (34) FULL WORD 4 ACMUCNTX User context field.

56 (38) CHARACTER 4 ACMTRNID Transaction ID.

60 (3C) BYTE 1 Reserved for C
String.

61 (3D) BYTE 3 Unused.

64 (40) HALF WORD 2 ACMLPORT Local Port.

66 (42) HALF WORD 2 ACMRPORT Remote Port.

68 (44) CHARACTER 36 ACMSRVCE Transport Service
.Name.

104 (68) BYTE 1 Reserved for C
String.

105 (69) BYTE 3 Unused.

108 (6C) ADDRESS 4 ACMLADDR Local IP Address.

112 (70) ADDRESS 4 ACMRADDR Remote IP Address.

116 (74) CHARACTER 255 ACMLNAME Local IP Host Name.

371 (173) BYTE 1 Reserved for C
String.

372 (174) CHARACTER 255 ACMRNAME Remote IP Host
Name.

627 (273) BYTE 1 Reserved for 'C'
String.

ACM: Argument for Connection Management Used by the CONNECT and LISTEN API Services

Control Block Layouts B–9

Alphabetized Field Name Cross-Reference Table

This table provides an alphabetized list of field names mapped to the offset
within the ACM control block.

Name Hex Offset Hex Value

ACMDGNCD 14

ACMFUNC 2

ACMLADDR 6C

ACMLEN 74

ACMLNAME 74

ACMLPORT 40

ACMMRECV 2C

ACMMSEND 24

ACMQRECV 28

ACMQSEND 2

ACMRADDR 70

ACMRNAME 174

ACMRPORT 42

ACMRTNCD 10

ACMSCONN 1B 01

ACMSRVCE 44

ACMSTATS 18

ACMSTERM 1B 02

ACMTOKEN 4

ACMTRACE 1C

ACMTRNID 38

ACMUCNTX 34

ACMVERS 0

ACM: Argument for Connection Management Used by the CONNECT and LISTEN API Services

B–10 PL/I Programmers Guide

Sample Structure Member T09KPACM

The following is a sample of structure member T09KPACM located in the
cpthlq.T09MAC distributed library.

■ It contains the layout and field names for your use in your application
program

■ It is used by all the provided application programming samples

 5 ACMVERS FIXED BIN (15) INIT(2), /* ACM BLOCK VERSION */
 5 ACMFUNC FIXED BIN (15) INIT(0), /* FUNCTION CODE */
 5 ACMTOKEN POINTER INIT(NULL), /* DATA XFER TOKEN */
 5 ACMCDTBL CHAR (8) INIT(LOW(8)), /* OPT. XLATE TBL C/D */
 5 ACMRTNCD FIXED BIN (31) INIT(0), /* RETURN CODE */
 5 ACMDGNCD FIXED BIN (31) INIT(0), /* DIAGNOSTIC CODE */
 5 ACMSFILL CHAR (3) INIT(LOW(3)), /* RESERVED STATS */
 5 ACMSTATS BIT (8) INIT('00000000'B), /* STATISTICS REQS */
 5 ACMTFILL CHAR (2) INIT(LOW(2)), /* RESERVED TRACE */
 5 ACMTRAC2 BIT (8) INIT('00000000'B), /* TRACE OPTIONS 2 */
 5 ACMTRAC1 BIT (8) INIT('00000000'B), /* TRACE OPTIONS 1 */
 5 ACMQSEND FIXED BIN (31) INIT(0), /* SEND QUEUE SIZE */
 5 ACMMSEND FIXED BIN (31) INIT(0), /* SEND MAX BUFFER */
 5 ACMQRECV FIXED BIN (31) INIT(0), /* RECV QUEUE SIZE */
 5 ACMMRECV FIXED BIN (31) INIT(0), /* RECV MAX BUFFER */
 5 ACMTLSTN FIXED BIN (31) INIT(0), /* LISTEN TOKEN */
 5 ACMUCNTX FIXED BIN (31) INIT(0), /* USER CONTEXT FIELD */
 5 ACMTRNID CHAR (4) INIT(' '), /* SERVER TRANSID FOR */
 /* LISTEN TO START */
 5 ACMRSVD4 CHAR (1) INIT(LOW(1)), /* (RESERVED: IN USE) */
 5 ACMRSVD5 CHAR (3) INIT(LOW(3)), /* */
 5 ACMLPORT FIXED BIN (15) INIT(0), /* LOCAL PORT NO. */
 5 ACMRPORT FIXED BIN (15) INIT(0), /* REMOTE PORT NO. */
 5 ACMSRVCE CHAR (36) INIT(' '), /* SERVICE NAME */
 5 ACMRSVD6 CHAR (1) INIT(LOW(1)), /* (RESERVED: IN USE) */
 5 ACMRSVD7 CHAR (1) INIT(LOW(1)), /* */
 5 ACMOPTN2 BIT (8) INIT('00000000'B), /* OPTIONS - UNUSED */
 5 ACMOPTN1 BIT (8) INIT('00000000'B), /* OPTION CODE 1 */
 5 ACMLADDR FIXED BIN (31) INIT(0), /* LOCAL HOST ADDRESS */
 5 ACMRADDR FIXED BIN (31) INIT(0), /* REMOTE HOST ADDR */
 5 ACMLNAME CHAR (255) INIT(' '), /* LOCAL HOST NAME */
 5 ACMRSVD8 CHAR (1) INIT(LOW(1)), /* (RESERVED: IN USE) */
 5 ACMRNAME CHAR (255) INIT(' '), /* REMOTE HOST NAME */
 5 ACMRSVD9 CHAR (1) INIT(LOW(1)), /* (RESERVED: IN USE) */
 5 ACMMSOCK FIXED BIN (15) INIT(0), /* MAX SOCKETS */
 5 ACMBCKLG FIXED BIN (15) INIT(0), /* LISTEN BACKLOG Q */
 5 ACMTIMEO FIXED BIN (31) INIT(0), /* TIMEOUT VALUE */
 5 ACMRSVDA FIXED BIN (31) INIT(0); /* RESERVED */
 /* OVERLAY OF ACMLNAME */
DCL 1 ACMRSVDL BASED(ADDR(ACMLNAME)),
 6 ACMSECLM CHAR (8), /* SECURITY MODULE */
 6 ACMUSRID CHAR (8), /* USER ID */
 6 ACMRPARM CHAR (8), /* USER ID */
 6 ACMCLNTL FIXED BIN (31), /* CLIENT DATA LEN */
 6 ACMMROEP FIXED BIN (31), /* MRO ENDPOINT */
 6 ACMMROAS FIXED BIN (31); /* ASCB PTR */

ACM: Argument for Connection Management Used by the CONNECT and LISTEN API Services

Control Block Layouts B–11

Connect/Listen Associated Constants from Structure Sample Member T09KPCON

The following is an excerpt from the T09KPCON structure with the fields that are
associated to the CONNECT and LISTEN calls. Variable field names contained in
the distributed samples and the examples in this guide refer to this structure.
This structure is available to you in the distributed software in cpthlq.T09MAC.
For detailed information and a sample of the complete T09KPCON structure, see
T09KPCON: PL/I Call Constants Structure.

ACMVERSN FIXED BIN (15) INIT (2), /* ACM BLOCK VERSN */

 /*--*/
 /* STATISTICS LOG REQUESTS */
 /*--*/

ACMSTATS_CONN BIT (8) INIT('00000001'B), /* CONNECTIONS */
ACMSTATS_TERM BIT (8) INIT('00000010'B), /* TRMNATION STATS */

 /*--*/
 /* ACM OPTIONS */
 /*--*/

ACMOPTN1_SYNC BIT (8) INIT('00000001'B), /* LISTEN SYNCPOINT*/
ACMOPTN1_LTRAN BIT (8) INIT('00000010'B), /* DYNAM TRANSACTN */
ACMOPTN1_NODNR BIT (8) INIT('00000100'B), /* NO DNR NAMES */
ACMOPTN1_NBLKO BIT (8) INIT('00001000'B), /* NON-BLOCK LISTEN*/
ACMOPTN1_OTRAN BIT (8) INIT('01000000'B), /* OPT. XLATE */
ACMOPTN1_CTRAN BIT (8) INIT('10000000'B), /* XLATE C/D */

ACMOPTN2_CLEN BIT (8) INIT('00000001'B), /* CLIENT DATA LEN */
ACMOPTN2_USRID BIT (8) INIT('00000010'B), /* USERID PRESENT */
ACMOPTN2_SCTY BIT (8) INIT('00000100'B), /* SECURITY PRESENT*/
ACMOPTN2_MRO BIT (8) INIT('00001000'B), /* LISTEN FOR MRO */

ADT: Argument for Data Transfer Used by RECIEVE, SEND, RECVFROM, and SENDTO Services

B–12 PL/I Programmers Guide

ADT: Argument for Data Transfer Used by RECIEVE, SEND,
RECVFROM, and SENDTO Services

This section describes the Unicenter SOLVE:CPT ADT. The ADT is used by the
RECIEVE, SEND, RECVFROM, and SENDTO services to transfer data and
provides the following information:

■ An alphabetical list of ADT fields

■ A sample copy of the T09KPADT structure

■ An offset table of the ADT fields

■ Data transfer associated constants from structure sample member
T09KPCON

Note: The ADT control block is 644 bytes in length, which is x’284’ in
hexadecimal. The space for this control block must be created by the application
and mapped to by the sample T09KPADT structure.

Offsets

This table provides information from the T09KPADT structure member with
field descriptions.

Decimal Hex Type Length Name Description

0 (0) HALF WORD 2 ADTVERS Version number.

2 (2) HALF WORD 2 ADTFUNC Function code.

4 (4) ADDRESS 4 ADTTOKEN Token (CEP).

8 (8) ADDRESS 4 ADTBUFFA Data buffer address.

12 (C) FULL WORD 4 ADTBUFFL Data buffer length.

16 (10) FULL WORD 4 ADTRTNCD Return code.

20 (14) FULL WORD 4 ADTDGNCD Diagnostic code.

24 (18) BYTE 1 ADTOPTN4 Option 4.

25 (19) BYTE 1 ADTOPTN3 Option 3.

26 (1A) BYTE 1 ADTOPTN2 Option 2.

ADT: Argument for Data Transfer Used by RECIEVE, SEND, RECVFROM, and SENDTO Services

Control Block Layouts B–13

Decimal Hex Type Length Name Description

27 (1B) BYTE 1 ADTOPTN1 Option 1.

 1 ADTFVLST Vector list flag.

Alphabetized Cross-Reference Table

This table provides an alphabetized list of field names mapped to the offset
within the ADT control block.

Name Hex Offset Hex Value

ADTBUFFA 8

ADTBUFFL C

ADTDGNCD 14

ADTFUNC 2

ADTFVLST 1B 01

ADTLEN 1C

ADTOPTN4 1B

ADTOPTN3 1A

ADTOPTN2 19

ADTOPTN1 18

ADTOPTNS 18

ADTRTNCD 10

ADTTOKEN 4

ADTVERS 0

ADT: Argument for Data Transfer Used by RECIEVE, SEND, RECVFROM, and SENDTO Services

B–14 PL/I Programmers Guide

Sample Structure Member T09KPADT

The following is a sample of structure member T09KPACM located in the
cpthlq.T09MAC distributed library.

It provides the following information:

■ It contains the layout and field names for your use in your application
program

■ It is used by all the provided application programming samples

5 ADTVERS FIXED BIN (15) INIT(2), /* ADT BLOCK VERSION */
5 ADTFUNC FIXED BIN (15) INIT(0), /* FUNCTION CODE */
5 ADTTOKEN POINTER INIT(NULL), /* DATA XFER TOKEN */
5 ADTBUFFA POINTER INIT(NULL), /* DATA BUFFER ADDRSS */
5 ADTBUFFL FIXED BIN (31) INIT(0), /* BUFFER/DATA LENGTH */
5 ADTRTNCD FIXED BIN (31) INIT(0), /* RETURN CODE */
5 ADTDGNCD FIXED BIN (31) INIT(0), /* DIAGNOSTIC CODE */
5 ADTSFILL CHAR (3) INIT(LOW(3)), /* RESERVED STATS */
5 ADTSTATS BIT (8) INIT('00000000'B), /* STATISTICS REQS */
5 ADTTFILL CHAR (2) INIT(LOW(2)), /* RESERVED TRACE */
5 ADTTRAC2 BIT (8) INIT('00000000'B), /* TRACE OPTIONS 2 */
5 ADTTRAC1 BIT (8) INIT('00000000'B), /* TRACE OPTIONS 1 */
5 ADTQSEND FIXED BIN (31) INIT(0), /* TSEND QUEUE SIZE */
5 ADTMSEND FIXED BIN (31) INIT(0), /* TSEND BUFFER SIZE */
5 ADTQRECV FIXED BIN (31) INIT(0), /* TRECV QUEUE SIZE */
5 ADTMRECV FIXED BIN (31) INIT(0), /* TRECV BUFFER SIZE */
5 ADTTIMEO FIXED BIN (31) INIT(0), /* SELECT WAIT SECONDS*/
5 ADTRSVD1 FIXED BIN (31) INIT(0), /* RESERVED */
5 ADTVECTR POINTER INIT(NULL), /* SELECT VECTOR */
5 ADTNSLCT FIXED BIN (31) INIT(0), /* # OF VECTOR ENTRIES*/
5 ADTSLCTD FIXED BIN (31) INIT(0), /* # OF SOCKETS SELCTD*/
5 ADTLPORT FIXED BIN (15) INIT(0), /* LOCAL PORT */
5 ADTRPORT FIXED BIN (15) INIT(0), /* REMOTE PORT */
5 ADTMSOCK FIXED BIN (15) INIT(0), /* MAX SOCKETS */
5 ADTSRVCE CHAR (36) INIT(' '), /* SERVICE NAME */
5 ADTSEP# FIXED BIN (15) INIT(0), /* # OF SEP CHARS */
5 ADTSEP1 CHAR (1) INIT(' '), /* 1ST/ONLY SEP CHAR */
5 ADTSEP2 CHAR (1) INIT(' '), /* 2ND SEP CHARACTER */
5 ADTRSVD3 FIXED BIN (15) INIT(0), /* RESERVED */
5 ADTLADDR FIXED BIN (31) INIT(0), /* LOCAL HOST IP ADDR */
5 ADTRADDR FIXED BIN (31) INIT(0), /* REMOTE HOST IP ADR */
5 ADTLNAME CHAR (255) INIT(' '), /* LOCAL HOST NAME */
5 ADTRSVD4 CHAR (1) INIT(' '), /* RESERVED */
5 ADTRNAME CHAR (255) INIT(' '), /* REMOTE HOST NAME */
5 ADTRSVD5 CHAR (1) INIT(' '), /* RESERVED */
5 ADTUCNTX FIXED BIN (31) INIT(0), /* USER CONTEXT FIELD */
5 ADTOPTN4 BIT (8) INIT('0'B), /* RESERVED */
5 ADTOPTN3 BIT (8) INIT('0'B), /* RESERVED */
5 ADTOPTN2 BIT (8) INIT('0'B), /* OPTIONS - BYTE 2 */
5 ADTOPTN1 BIT (8) INIT('0'B); /* OPTIONS - BYTE 1 */

ADT: Argument for Data Transfer Used by RECIEVE, SEND, RECVFROM, and SENDTO Services

Control Block Layouts B–15

Data Transfer Associated Constants from Structure Sample Member T09KPCON

The following is an excerpt from the T09KPCON structure with the fields that are
associated to the RECIEVE, SEND, RECVFROM, and SENDTO calls. Variable
field names contained in the distributed samples and the examples in this guide
refer to this structure. This structure is available to you in the distributed
software in cpthlq.T09MAC. For detailed information and a sample of the
complete T09KPCON structure, see T09KPCON: PL/I Call Constants Structure.

 /*--*/
 /* ADT OPTIONS */
 /*--*/

ADTOPTN1_TYPSP BIT (8) INIT('00000001'B), /* RECD BY SEP CHAR*/
ADTOPTN1_TYPLL BIT (8) INIT('00000010'B), /* RECD BY LL PFX */
ADTOPTN1_BLCKS BIT (8) INIT('00000100'B), /* ICS BLOCK SEND */
ADTOPTN1_TMPRT BIT (8) INIT('00001000'B), /* TIMED PART RECV */
ADTOPTN1_TMRCV BIT (8) INIT('00010000'B), /* TIMED FULL RECV */
ADTOPTN1_NBLKS BIT (8) INIT('00100000'B), /* NO BLOCK SEND */
ADTOPTN1_NBLKR BIT (8) INIT('01000000'B), /* NO BLOCK RECV */
ADTOPTN1_DODNR BIT (8) INIT('10000000'B), /* DO DNR FOR UDP */

/* ADTOPTN2_RT100 ADTTIMEO IS EXPRESSED IN UNITS OF */
/* 1/100 SECOND FOR RECV TIMEOUT */
ADTOPTN2_RT100 BIT (8) INIT('00001000'B), /* 1/100 sec recv */
ADTOPTN2_NQUE BIT (8) INIT('00010000'B), /* NO QUEUEING */
ADTOPTN2_NWAIT BIT (8) INIT('00100000'B), /* NO WAIT-SEL TOOL*/
ADTOPTN2_NOSTP BIT (8) INIT('01000000'B), /* NO STRIP LL/SEP */
ADTOPTN2_VLIST BIT (8) INIT('10000000'B), /* VECTOR LIST */

/*---*/
/* ADTSTATS VALUES ARE THE SAME AS DEFINED FOR */
/* THE ACM. THESE FIELDS CAN THUS BE SET TO ACM-CONSTANTS. */
/*---*/

 /*--*/
 /* ADT SELECT VECTOR REQUESTS */
 /*--*/

ADTSLCTR BIT (8) INIT('00000001'B), /* SELECT FOR READ */
ADTSLCTW BIT (8) INIT('00000010'B), /* SELECT FOR WRIT */
ADTSLCTE BIT (8) INIT('00000100'B), /* SELECT FOR EXCP */

AFM: Argument for Facility Management Used by the GIVE and TAKE Services

B–16 PL/I Programmers Guide

AFM: Argument for Facility Management Used by the GIVE
and TAKE Services

This section describes the Unicenter SOLVE:CPT AFM. The AFM is used by the
GIVE and TAKE calls to transfer ownership of a TCP connection between two
CICS transactions. The following information is provided:

■ An offset table of the AFM fields

■ An alphabetical list of AFM fields

■ A sample copy of the T09KPAFM structure

■ GIVE/TAKE associated constants from structure sample member
T09KPCON

Note: The AFM control block is 40 bytes in length, which is x’28’ in hexadecimal.
The space for this control block must be created by the application and mapped
to by the sample T09KPAFM structure.

Offsets

This table provides information from the T09KPAFM structure member with
field descriptions.

Decimal Hex Type Length Name Description

0 (0) AFM Data transfer
parameters.

0 (0) HALF WORD 2 AFMVERS Version number.

2 (2) HALF WORD 2 AFMFUNC Function code.

4 (4) ADDRESS 4 AFMTOKEN Token (CEP).

8 (8) ADDRESS 4 Reserved.

12 (C) FULL WORD 4 Reserved.

16 (10) FULL WORD 4 AFMRTNCD Return code.

20 (14) FULL WORD 4 AFMDGNCD Diagnostic code.

27 (1B) BYTE 1 AFMOPTNS Option 1.

28 (1C) AFMLEN Length of AFM.

AFM: Argument for Facility Management Used by the GIVE and TAKE Services

Control Block Layouts B–17

Alphabetized Cross-Reference Table

This table provides an alphabetized list of field names mapped to the offset
within the AFM control block.

Name Hex Offset Hex Value

AFMDGNCD 14

AFMFUNC 2

AFMLEN 1C

AFMOPTNS 1B

AFMRTNCD 10

AFMTOKEN 4

AFMVERS 0

Sample Structure Member T09KPAFM

The following is a sample of structure member T09KPAFM located in the
cpthlq.T09MAC distributed library.

It:

■ Contains the layout and field names for your use in your application
program

■ Is used by all the provided application programming samples

5 AFMVERS FIXED BIN (15) INIT(2), /* AFM BLOCK VERSION */
5 AFMFUNC FIXED BIN (15) INIT(0), /* FUNCTION CODE */
5 AFMTOKEN POINTER INIT(NULL), /* DATA XFER TOKEN */
5 AFMNTRAN CHAR (4) INIT(LOW(4)), /* SELECT TOOL NEXT TR*/
5 AFMRSVD2 FIXED BIN (31) INIT(0), /* RESERVED */
5 AFMRTNCD FIXED BIN (31) INIT(0), /* RETURN CODE */
5 AFMDGNCD FIXED BIN (31) INIT(0), /* DIAGNOSTIC CODE */
5 AFMRSVD3 CHAR (3) INIT(LOW(3)), /* RESERVED */
5 AFMOPTNS BIT (8) INIT('00000000'B), /* AFM OPTIONS */
5 AFMMSOCK FIXED BIN (15) INIT(0); /* MAXIMUM SOCKETS */

AFT: Argument for File Transfer Used by the FTP Client Service Call

B–18 PL/I Programmers Guide

GIVE/TAKE Associated Constants from Structure Sample Member T09KPCON

The following is an excerpt from the T09KPCON structure with the fields that are
associated to the GIVE and TAKE calls. Variable field names contained in the
distributed samples and the examples in this guide refer to this structure. This
structure is available to you in the distributed software in cpthlq.T09MAC. For
detailed information and a sample of the complete T09KPCON structure, see
T09KPCON: PL/I Call Constants Structure.

AFMOPT_DEQ BIT (8) INIT('10000000'B), /* DEQUEUE ONLY */
AFMOPT_ENQ BIT (8) INIT('01000000'B), /* ENQUEUE ONLY */
AFMOPT_SEL BIT (8) INIT('00100000'B), /* SELECT TOOL */

AFT: Argument for File Transfer Used by the FTP Client
Service Call

This section describes the Unicenter SOLVE:CPT Argument for file transfer, the
AFT. The AFT is used by the FTP client service call to define the arguments used
to make a FTP client call to a remote FTP server. The following information is
provided:

■ An offset table of the AFT fields

■ An alphabetical list of AFT fields

■ A sample copy of the T09KPAFT structure

Note: The AFT control block is 320 bytes in length, which is x’140’ in
hexadecimal. The space for this control block must be created by the application
and mapped to by the sample T09KPAFT structure.

Offsets

This table provides information from the T09KPAFT structure member with field
descriptions.

Decimal Hex Type Length Name Description

0 (0) AFT File Transfer
parameters

AFT: Argument for File Transfer Used by the FTP Client Service Call

Control Block Layouts B–19

Alphabetized Cross-Reference Table

This table provides an alphabetized list of field names mapped to the offset
within the AFT control block.

Name Hex Offset Hex Value

AFTDGNCD 14

Sample Structure Member T09KPAFT

The following is a sample of structure member T09KPAFT located in the
cpthlq.T09MAC distributed library.

It:

■ Contains the layout and field names for your use in your application
program

■ Is used by all the provided application programming samples

5 AFTVERS FIXED BIN (15) INIT(2), /* AFT BLOCK VERSION */
5 AFTOPTN2 BIT (8) INIT('00000000'B), /* OPTIONS - UNUSED */
5 AFTOPTN1 BIT (8) INIT('00000000'B), /* OPTION CODE 1 */
5 AFTRNAMA POINTER INIT(NULL), /* REMOTE HOST NAME */
5 AFTRNAML FIXED BIN (31) INIT(0), /* REM HOST NAME LENGTH*/
5 AFTRADDR FIXED BIN (31) INIT(0), /* REMOTE HOST ADDRESS */
5 AFTUSER CHAR (64) INIT(' '), /* USER ID ON REMOTE */
5 AFTPASS CHAR (64) INIT(' '), /* USER PSWD ON REMOTE */
5 AFTACCT CHAR (64) INIT(' '), /* USER ACCOUNT ON REM */
5 AFTTRACE FIXED BIN (31) INIT(0), /* API TRACE LEVEL */
5 AFTNBRX FIXED BIN (31) INIT(0), /* NO. OF FILES */
5 AFTNBRXT FIXED BIN (31) INIT(0), /* FILES TRANSFERRED */
5 AFTRTNCD FIXED BIN (31) INIT(0), /* CPT RETURN CODE */
5 AFTDGNCD FIXED BIN (31) INIT(0), /* CPT DIAGNOSTIC CODE */
5 AFTRTNTA POINTER INIT(NULL), /* CPT RETURN TEXT */
5 AFTRTNTL FIXED BIN (31) INIT(0), /* CPT RETN TEXT LENGTH*/
5 AFTQTYPE CHAR (2) INIT(' '), /* FILE INPUT MEDIUM */
5 AFTQNAME CHAR (8) INIT(' '), /* INPUT QUEUE NAME */
5 AFTRSVD1 CHAR (2) INIT(' '), /* */
5 AFTQITEM FIXED BIN (31) INIT(0), /* # ITEMS IN QUEUE */
5 AFTMODE CHAR (1) INIT(' '), /* TRANSMISSION MODE */
5 AFTTYPE CHAR (1) INIT(' '), /* TRANSMISSION TYPE */
5 AFTFORM CHAR (1) INIT(' '), /* TRANSMISSION FORMAT */
5 AFTFOPTS CHAR (1) INIT(' '), /* FILE OPTIONS */
5 AFTTLIM FIXED BIN (31) INIT(0), /* CLIENT DATA TIMEOUT */
5 AFTRLIM FIXED BIN (15) INIT(0), /* RETRY COUNT */
5 AFTRSVD3 CHAR (1) INIT(' '), /* */
5 AFTSTRU CHAR (1) INIT(' '), /* TRANSMIT STRUCTURE */
5 AFTALLO CHAR (8) INIT(' '), /* */
5 AFTSITEA POINTER INIT(NULL), /* SITE PARAMETERS */
5 AFTSITEL FIXED BIN (31) INIT(0), /* SITE PARMS LENGTH */
5 AFTRNTOA POINTER INIT(NULL), /* FILE RENAME NAME */
5 AFTRNTOL FIXED BIN (31) INIT(0), /* RENAME NAME LENGTH */
5 AFTWDIRA POINTER INIT(NULL), /* DIRECTORY NAME */
5 AFTWDIRL FIXED BIN (31) INIT(0), /* DIRECTORY NAME LNGTH*/
5 AFTFNAMA POINTER INIT(NULL), /* REMOTE FILE NAME */

AFT: Argument for File Transfer Used by the FTP Client Service Call

B–20 PL/I Programmers Guide

5 AFTFNAML FIXED BIN (31) INIT(0), /* REM FILE NAME LENGTH*/
5 AFTFUNC CHAR (4) INIT(' '), /* FTP COMMAND */
5 AFTFTPCD FIXED BIN (31) INIT(0), /* FTP RETURN CODE */
5 AFTFTPTA POINTER INIT(NULL), /* FTP REPLY TEXT */
5 AFTFTPTL FIXED BIN (31) INIT(0); /* REPLY TEXT LENGTH */

/**/
/* AFT CONSTANTS */
/*--*/

DCL (

 AFTVERS_VERSN FIXED BIN (15) INIT(2), /* REQUIRED */

 /*---*/
 /* FTP OPTIONS */
 /*---*/
 AFTOPTN1_NODNR BIT (8) INIT('00000100'B), /* NO DNR NAMES */

 /*---*/
 /* FILE INPUT MEDIUM */
 /*---*/
 AFTQTYPE_TS CHAR (2) INIT('TS'), /* TEMP STORAGE */
 AFTQTYPE_TD CHAR (2) INIT('TD'), /* TRANSIENT DATA */

 /*---*/
 /* TRANSMISSION MODE */
 /*---*/
 AFTMODE_DFLT CHAR (1) INIT(' '), /* DEFAULT */
 AFTMODE_STRM CHAR (1) INIT('S'), /* STREAM MODE */
 AFTMODE_BLCK CHAR (1) INIT('B'), /* BLOCKED MODE */
 AFTMODE_COMP CHAR (1) INIT('C'), /* COMPRESSED MODE*/

 /*---*/
 /* TRANSMISSION TYPE */
 /*---*/
 AFTTYPE_DFLT CHAR (1) INIT(' '), /* DEFAULT */
 AFTTYPE_ASCII CHAR (1) INIT('A'), /* ASCII */
 AFTTYPE_IMAGE CHAR (1) INIT('I'), /* IMAGE */
 AFTTYPE_EBCDC CHAR (1) INIT('E'), /* EBCDIC */
 AFTTYPE_LOCAL CHAR (1) INIT('L'), /* LOCAL */

 /*---*/
 /* TRANSMISSION FORMAT */
 /*---*/
 AFTFORM_DFLT CHAR (1) INIT(' '), /* DEFAULT */
 AFTFORM_NPRNT CHAR (1) INIT('N'), /* NON-PRINT */
 AFTFORM_TELNET CHAR (1) INIT('T'), /* TELNET */
 AFTFORM_ASACC CHAR (1) INIT('A'), /* ASA CONTROL */

 /*---*/
 /* TRANSMISSION STRUCTURE */
 /*---*/
 AFTSTRU_DFLT CHAR (1) INIT(' '), /* DEFAULT */
 AFTSTRU_FILE CHAR (1) INIT('F'), /* FILE */
 AFTSTRU_RECRD CHAR (1) INIT('R'), /* RECORD */
 AFTSTRU_PAGE CHAR (1) INIT('P'), /* PAGE */

 /*--*/
 /* FILE OPTIONS */
 /*--*/
 AFTFOPTS_DFLT CHAR (1) INIT(' '), /* DEFAULT */
 AFTFOPTS_BLANK CHAR (1) INIT('B'), /* STRIP BLANKS */

AFT: Argument for File Transfer Used by the FTP Client Service Call

Control Block Layouts B–21

 /*--*/
 /* FTP SRVICE COMMAND */
 /*--*/
 AFTFUNC_STOR CHAR (4) INIT('STOR'), /* STORE, REPLACE */
 AFTFUNC_STOU CHAR (4) INIT('STOU'), /* STORE UNIQUE */
 AFTFUNC_APPE CHAR (4) INIT('APPE'), /* APPEND */
 AFTFUNC_RENM CHAR (4) INIT('RENM') /* RENAME */
);

File Transfer Associated Constants from Structure Sample Member T09KPCON

There are no constants for file transfer contained in the T09KPCON structure. See
the T09KPAFT sample for constants relating to file transfer.

AXL: Argument for Data Translation Used by the Translate API Service

B–22 PL/I Programmers Guide

AXL: Argument for Data Translation Used by the Translate API
Service

This section describes the Unicenter SOLVE:CPT Argument for data translation,
the AXL. The AXL is used by the TRANSLATE service to define the arguments
to translate.

The following information is provided:

■ An offset table of the AXL fields

■ An alphabetical list of AXL fields

■ A sample copy of the T09KPAXL structure

■ Translate associated constants from structure sample member T09KPCON

Note: The AXL control block is 32 bytes in length, which is x’20’ in hexadecimal.
The space for this control block must be created by the application and mapped
to by the sample T09KPAXL structure.

Offsets

This table provides information from the T09KPAXL structure member with field
descriptions.

Decimal Hex Type Length Name Description

0 (0) AXL Translate parameters.

0 (0) HALF
WORD

2 AXLVERS Version number.

2 (2) HALF
WORD

2 AXLFUNC Function code.

4 (4) ADDRESS 4 AXLTOKEN Token (CEP).

8 (8) ADDRESS 4 AXLSADDR Source text address.

12 (C) FULL
WORD

4 AXLSLENG Source text length.

16 (10) FULL
WORD

4 AXLRTNCD Return code.

20 (14) FULL
WORD

4 AXLDGNCD Diagnostic code.

AXL: Argument for Data Translation Used by the Translate API Service

Control Block Layouts B–23

Decimal Hex Type Length Name Description

25 (19) BYTE 1 AXLXMODE Mode byte 1.

 AXLXMODE_
SBCS

- Single-byte character
set.

 1 AXLXMODE_
DBCS

- Double-byte
character set.

 1. AXLXMODE_
MIXD

- Mixed SBCS/DBCS
character set.

 1.. AXLXMODE_
NUMS

- Numeric character
set.

27 (1B) BYTE 1 AXLXTYPE Type byte 1.

 1 AXLXTYPE_A
TOE

- Translate ASCII to
EBCDIC.

 1. AXLXTYPE_E
TOA

- Translate EBCDIC to
ASCII.

 1.. AXLXTYPE_A
UPC

- Translate ASCII to
uppercase.

 1... AXLXTYPE_E
UPC

- Translate EBCDIC to
uppercase.

28 (1C) ADDRESS 4 AXLTABLE Address of user
translation table.

Alphabetized Cross-Reference Table

This table provides an alphabetized list of field names mapped to the offset
within the AXL control block.

Name Hex Offset Hex Value

AXLDGNCD 14

AXLFUNC 2

AXLXTYPE 1B

AXLXMODE_DBCS 19 01

AXLXMODE_MIXD 19 02

AXLXMODE_NUMS 19 04

AXLXMODE_SBCS 19 00

AXL: Argument for Data Translation Used by the Translate API Service

B–24 PL/I Programmers Guide

Name Hex Offset Hex Value

AXLRTNCD 10

AXLSADDR 8

AXLSLENG C

AXLTABLE 1C

AXLXTYPE_ATOE 1B 01

AXLXTYPE_AUPC 1B 04

AXLXTYPE_ETOA 1B 02

AXLXTYPE_EUPC 1B 08

AXLTOKEN 4

AXLVERS 00

AXLXMODE 19

Sample Structure Member T09KPAXL

The following is a sample of structure member T09KPAXL located in the
cpthlq.T09MAC distributed library.

It:

■ Contains the layout and field names for your use in your application
program

■ Is used by all the provided application programming samples

5 AXLVERS FIXED BIN (15) INIT(2), /* AXL BLOCK VERSION */
5 AXLFUNC FIXED BIN (15) INIT(0), /* FUNCTION CODE */
5 AXLTOKEN POINTER INIT(NULL), /* DATA XFER TOKEN */
5 AXLSADDR POINTER INIT(NULL), /* SOURCE TEXT ADDRSS */
5 AXLSLENG FIXED BIN (31) INIT(0), /* SOURCE TEXT LENGTH */
5 AXLRTNCD FIXED BIN (31) INIT(0), /* RETURN CODE */
5 AXLDGNCD FIXED BIN (31) INIT(0), /* DIAGNOSTIC CODE */
5 AXLXMRSV CHAR (1) INIT(LOW(1)), /* RESERVED FOR MODE */
5 AXLXMODE BIT (8) INIT('00000000'B), /* CHARACTER SET MODE */
5 AXLXTRSV CHAR (1) INIT(LOW(1)), /* RESERVED FOR TYPE */
5 AXLXTYPE BIT (8) INIT('00000000'B), /* TRANSLATION TYPE */
5 AXLTABLE POINTER INIT(NULL); /* USER XLATE TABLE */
 /* ADDRESS, IF ANY */

AXL: Argument for Data Translation Used by the Translate API Service

Control Block Layouts B–25

Translate Associated Constants from Structure Sample Member T09KPCON

The following is an excerpt from the T09KPCON structure with the fields that are
associated to the Translate call. Variable field names contained in the distributed
samples and the examples in this guide refer to this structure. This structure is
available to you in the distributed software in cpthlq.T09MAC. For detailed
information and a sample of the complete T09KPCON structure, see T09KPCON:
PL/I Call Constants Structure.

 /*--*/
 /* TRANSLATION TYPE REQUEST */
 /*--*/

AXLXTYPE_ATOE BIT (8) INIT('00000001'B), /* ASCII-TO-EBCDIC */
AXLXTYPE_ETOA BIT (8) INIT('00000010'B), /* EBCDIC-TO-ASCII */
AXLXTYPE_AUPC BIT (8) INIT('00000100'B), /* A TO UPPERCASE A*/
AXLXTYPE_EUPC BIT (8) INIT('00001000'B), /* E TO UPPERCASE E*/

 /*--*/
 /* CHARACTER SET MODE */
 /*--*/

AXLXMODE_SBCS BIT (8) INIT('00000000'B), /* SINGLE BYTE C.S. */
AXLXMODE_DBCS BIT (8) INIT('00000001'B), /* DOUBLE BYTE C.S. */
AXLXMODE_MIXD BIT (8) INIT('00000010'B), /* MIXED SBCS/DBCS */
AXLXMODE_NUMS BIT (8) INIT('00000100'B) /* NUMBER SET */

Client Data Listener Transaction Start

B–26 PL/I Programmers Guide

Client Data Listener Transaction Start
The transaction that is initiated by the Client Data Listener Tool is passed this
control block. This structure is accessed by through an EXEC CICS RETRIEVE
command in the invoked(spawned child) transaction.

For further information refer to Client/Data Listener Option contained in the
section: T09MLSTN Macro in the “Configuration Reference” chapter of the
Administrator Guide.

The following information is provided: A sample copy of the T09KPCSK
structure.

Note: The Client Data Listener control block is 72 bytes in length, which is x’48’
in hexadecimal. The storage for this control block will be allocated by CICS when
the EXEC CICS RETREIVE command is issued. The sample T09KPCSK structure
should then map to the storage.

Sample Structure Member T09KPCSK

The following is a sample of structure member T09KPCSK located in the
cpthlq.T09MAC distributed library.

It:

■ Contains the layout and field names for your use in your application
program

■ Is used by all the provided application programming samples

5 TAKE_TOKEN FIXED BIN (31) INIT (0), /* Socket ID */
5 LSTN_NAME CHAR (8) INIT(LOW(8)), /* Listener name */
5 LSTN_SUBNAME CHAR (8) INIT(LOW(8)), /* Listener subname */
5 CLIENT_DATA CHAR (35) INIT(LOW(8)), /* Client data */
5 LSTN_RESERV1 CHAR (1) INIT(LOW(8)), /* For C lang delim */
5 IP_FAMILY FIXED BIN (15) INIT (0), /* IP family/domain */
5 IP_REM_PORT FIXED BIN (15) INIT (0), /* Remote port */
5 IP_REM_ADDR FIXED BIN (31) INIT (0), /* Remote IP address*/
5 LSTN_RESERVD CHAR (8) INIT(LOW(8)); /* Reserved */

Connection Time Security Program Control Block

Control Block Layouts B–27

Connection Time Security Program Control Block
When security is turned on in the T09MCICS or T09MLSTN macro in the
configuration file, control is passed to the specified security program. The
security program is passed this control block. This structure is accessed by
through an EXEC CICS RETREIVE command in the invoked(spawned child)
transaction.

The following information is provided:

■ An offset table of the security program fields

■ A sample copy of the T09KPSEC structure

Note: The security program control block is 596 bytes in length, which is x’254’
in hexadecimal. The storage for this control block will be allocated by CICS when
the EXEC CICS RETREIVE command is issued. The sample T09KPSEC structure
should then be mapped to the storage.

For further information, see About the Optional Security Program in the
“Security” appendix of the Administrator Guide.

Offsets

This table provides information from the T09KPSEC structure member with field
descriptions.

Connection Time Security Program Control Block

Decimal Hex Format Field Description

0 (0) 4-byte character SECTRAN Requested server transaction,
maybe modified by the
program.

4 (4) 40-byte
character

SECDATA Client data, if available.

44 (2C) 2-byte character SECSTRT Method of server initiation:
KC, TC, or IC.

46 (2E) 6-byte character SECICTM IC Hours, Minutes, Seconds.

52 (34) 2-byte binary SECAFAM Address family: Inet
domain=2.

54 (36) 2-byte binary SECRPRT Client remote port number.

56 (38) 4-byte binary SECRHST Client remote host IP address.

Connection Time Security Program Control Block

B–28 PL/I Programmers Guide

Decimal Hex Format Field Description

60 (3C) 1-byte character SECACTN Authorization switch:
■ 1=accept
■ 0=fail

61 (3D) 4-byte character SECTMID Associated terminal facility.

65 (41) 2-byte binary SECLPRT Requested server local port.

67 (43) 8-byte binary SECUSER Returned user ID

75 (4B) 4-byte binary SECTOKN Token that represents the TCP
connection.

79 (4F) 4-byte binary SECLHST Local host IP address.

Sample Structure Member T09KPSEC

The following is a sample of structure member T09KPSEC located in the
cpthlq.T09MAC distributed library.

It:

■ Contains the layout and field names for your use in your application
program

■ Is used by all the provided application programming samples

Please note that a sample structure is not provided at this time for PL/I

 5 SECTRAN CHAR (4),
 5 SECDATA CHAR (40),
 5 SECSTRT CHAR (2),
 5 SECICTM CHAR (6),
 5 SECADRS,
 10 SECAFAM FIXED BIN (15),
 10 SECRPRT FIXED BIN (15),
 10 SECRHST FIXED BIN (31),
 5 SECACTN CHAR (1),
 5 FILLER1 CHAR (1),
 5 SECTMID CHAR (4),
 5 SECLPRT FIXED BIN (15),
 5 SECUSER CHAR (8),
 5 FILLER2 CHAR (512),
 5 SECTOKN FIXED BIN (31),
 5 SECLHST FIXED BIN (31);

Parameter List Passed to T09MTRAN Initiated Transactions

Control Block Layouts B–29

Parameter List Passed to T09MTRAN Initiated Transactions
Important! There are two formats for the parameter list that is passed to the transaction
initiated by Unicenter Solve:CPT when configured through the T09MTRAN. The simple
format is when the transaction is passed the string of data contained within quotes of the
PARMDATA parameter of the T09MTRAN macro.

For complete details and samples on how to have Unicenter Solve:CPT initiate
your CICS transaction for you, see the “T09MTRAN Programming Notes”
appendix in this guide.

The T09MTRAN macro is part of the configuration table that is fully documented
in the Administrator Guide.

The second format of is the list parameter (LSTP) layout. The LSTP format is
used whenever any of the CFG0000 fields (fields other than USERID, TERMID,
TRANSID and PARMDATA) are configured from the T09MTRAN macro. This
layout consists of 64 bytes passed to the application as shown below.

T09DLSTP DSECT Sample

The following is a sample of DSECT member T09DLSTP located in the
cpthlq.T09MAC distributed library.
LSTID DS CL4’LSTP’ ID for Control block
LSTLEN DS H Total length of LSTPARMS DSECT
LSTVERS DS XL2 Version number
LSTOPTDA DS A Pointer to the optional Data
LSTOPTLN DS F Length of the optional Data
LSTCFGDA DS A pointer to the CFG0000 field
LSTCFGLN DS F Length of the CFG0000 field
LSTLCADA DS A Pointer to the current LCA
LSTLCALN DS F Length of the current LCA
LSTRESVD DS XL32 Reserved for future use

A program can specify the LSTP DSECT by adding the following line to an
assembler program:
T09DLSTP MF=DSECT

Parameter List Passed to T09MTRAN Initiated Transactions

B–30 PL/I Programmers Guide

Field Descriptions

LSTID Tag identification of LSTP.

LSTLEN Length field of the LSTP DSECT.

LSTVERS Current version number of the DSECT.

LSTOPTDA Pointer to a copy of the data specified on the PARM field
in the T09MTRAN entry in the T09CONxx configuration
file.

LSTOPTLN Length of the LSTOPTDA field.

LSTCFGDA Pointer to a copy of the data specified on the CFG0000
fields in the T09MTRAN entry in the T09CONxx
configuration file.

LSTCFGLN Length of the LSTCFGDA field.

LSTLCADA A pointer to the LCA entry for this transaction.

LSTLCALN Length of the LSTLCADA field.

LCA0000 and CFG0000 Control Blocks

Control Block Layouts B–31

LCA0000 and CFG0000 Control Blocks
To be run time compatible with IBM’s CICS sockets some of the control block
architecture is provided so that program’s written to run in the IBM CICS sockets
environment will execute transparently in a Solve:CPT environment.

Two control block structures LCA0000 and CFG0000 are created as part of IBM’s
EZACONFIG configuration file are also created for Unicenter SOLVE:CPT. See
IBM’s Communications Server IP CICS Sockets Guide for full details on how to use
these features.

 The LCA0000 control block can be expanded in an assembler program by the
following macro expansion:
EZACICA AREA=LCA,TYPE=DSECT

The CFG0000 control block can be expanded in an assembler program by the
following macro expansion:
EZACICA AREA=CONFIG,TYPE=DSECT

The following assembler listings are simply provided for your convenience and
not intended to replace the IBM documentation in this area.

LCA0000 Control Block Listing

 EZACICA AREA=LCA,TYPE=DSECT
+*
+* DSECT FOR LISTENER CONTROL AREA
+*
+LCA0000 DSECT
+*
+LCATECB DS F Termination ECB
+LCATRAN DS CL4 Name of Listener transaction
+LCASTAT DS X Status of this listener
+LCASTAT0 EQU B'00000000' Listener not in operation
+LCASTATI EQU B'00000001' Listener in initialization
+LCASTATS EQU B'00000010' Listener in SELECT
+LCASTATP EQU B'00000100' Listener processing
+LCASTATE EQU B'00001000' Listener had initialization error
+LCASTATC EQU B'00010000' Immediate termination in progress
+LCASTATD EQU B'00100000' Deferred termination in progress
+LCAPHASE DS X Execution phase for IBM listener
+LCAEND DS 0F Alignment
+LCALEN EQU LCAEND-LCA0000 Length of Listener Control Area
+LCACHAIN DS A Address of next LCA on chain
+LCAEND2 DS 0F Alignment
+LCALEN2 EQU LCAEND2-LCA0000 Length of chained LCA

LCA0000 and CFG0000 Control Blocks

B–32 PL/I Programmers Guide

CFG0000 Control Block Listing

,, EZACICA AREA=CONFIG,TYPE=DSECT
+*
+* DSECT FOR CICS/SOCKETS CONFIGURATION FILE
+*
+CFG0000 DSECT
+CFHAPPL DS CL8 APPLID of CICS
+*
+CFHRTYPE DS CL1 Record Type
+CFHRTYPC EQU C'C' CICS Record
+CFHRTYPL EQU C'L' Listener Record
+*
+ DS XL3 Reserved
+*
+* Record Layout for CICS Record
+*
+CFCTRAN DS XL4 Binary Zeros
+CFCTCPIP DS CL8 Address Space Name for TCP/IP
+CFCNOTSK DS H Number of Reusable tasks
+CFCSTIME DS H Cache Minimum Refresh Time
+CFCLTIME DS H Cache Maximum Refresh Time
+CFCNORES DS H Cache Number of Concurrent Resolver
+CFCDPRTY DS H Limit Priority of Subtask
+CFCENAME DS CL4 Name of TD Error Queue
+CFCOPT DS X CICS Options @L
+CFCOPTSS EQU B'00000001' Suppress task started messages @L
+*
+* Record Layout for Listener Record
+*
+ ORG CFCTRAN Reset Location Counter
+CFLTRAN DS CL4 Listener Transaction Name
+CFLPORT DS H Port Number for Listener
+CFLBKLOG DS H Backlog value for Listener
+CFLNSOCK DS H Number of Sockets Used by Listener
+CFLNMIN DS H Minimum Length of Input Message
+CFLLTIME DS H Timeout value in seconds for accept
+CFLRTIME DS H Timeout value in seconds for read
+CFLGTIME DS H Timeout value in seconds for
+ givesocket
+CFLOPT DS X Listener Options
+*
+CFLOPTIS EQU B'00000001' Immediate Startup
+CFLOPTTE EQU B'00000110' Translate entire message
+CFLOPTTR EQU B'00000010' Translate Transaction Code Only
+CFLOPTUD EQU B'00000100' Translate User Data Only
+* B'00001000' Reserved for compatibility
+CFLOPTPD EQU B'00010000' Peek at data only
+CFLOPTEB EQU B'00100000' Outbound messages are in EBCDIC
+CFLOPTEL EQU B'01000000' This is an ENHANCED listener
+*
+CFLSECXT DS CL8 Name of security exit
+CFLWLMN1 DS CL12 WLM group name 1 @A1
+CFLWLMN2 DS CL12 WLM group name 2 @A1
+CFLWLMN3 DS CL12 WLM group name 3 @A1
+CFLCSTRN DS CL4 Child server tranid
+CFLCSSTT DS CL2 Child server startup type
+CFLCSDLY DS CL6 Child server delay interval
+CFLMSGLN DS H Length of inbound message
+ ORG CFG0000+150 Leave some reserved area
+*
+CFGLEN EQU *-CFG0000 Length of record

T09MTRAN Programming Notes C–1

Appendix

C T09MTRAN Programming Notes

This chapter provides additional information on programming concerns when
using the T09MTRAN Unicenter SOLVE:CPT configuration table statement.

The T09MTRAN macro defines a CICS transaction that can be started by
Unicenter SOLVE:CPT. It is an excellent mechanism to start non-T09MLSTN
servers after Unicenter Solve: CPT is properly initialized. There is no
requirement that the transaction be a server, any transaction start that relates to
Unicenter SOLVE:CPT can be managed by the T09MTRAN configuration macro.

For full details on configuration of the T09MTRAN macro, see the chapter
“Configuration Reference” in the Administration Guide.

Operationally you can use the T09MTRAN macro startup two ways:

■ Using the default parameter of IMMED=YES, the transaction is automatically
started immediately after Unicenter SOLVE:CPT completes proper startup
initialization

■ If you code IMMED=NO, the you can manually start the transaction anytime
after Unicenter SOLVE:CPT initialization completes

For information and sample use of the IPUL transaction to start an IMMED=NO
defined transaction, see the chapter “Operations” in the Administration Guide.

This appendix discusses the following topics:

■ Parameter List Passed to T09MTRAN Initiated Transactions

■ LCA0000 and CFG0000 Control Block Programming Notes

Parameter List Passed to T09MTRAN Initiated Transactions

C–2 PL/I Programmers Guide

Parameter List Passed to T09MTRAN Initiated Transactions
There are two possible layouts of data passed to the customer’s transaction:

■ Basic layout where the data string is simply passed from the PARM field of
the T09MTRAN configuration table macro. This is the recommended default.

■ EZACONFG layout The LSTP DSECT with a length of 64 bytes.

Regardless of the parameter list the application issues a one of the following
CICS retrieve call to access the data:
EXEC CICS RETRIEVE INTO() LENGTH()

or
EXEC CICS RETRIEVE SET() LENGTH()

Basic Layout: Data
Passed from the
PARM Field

When using the basic layout, data placed on the PARM field is passed to the
T09MTRAN transaction. The transaction can retrieve the PARM data by issuing
the "EXEC CICS RETRIEVE ..." command.

This layout applies anytime that a user listener application has not configured
any of the CFG0000 fields in the T09MTRAN macro.

In this case the only fields that can be coded in the T09MTRAN macro are:

■ APPLID

■ ID

■ PARM

■ TERMID

■ TRANSID

■ USERID

Parameter List Passed to T09MTRAN Initiated Transactions

T09MTRAN Programming Notes C–3

Basic Layout Usage Examples

Using the sample examples as described in the “Operations” chapter of the
Administration Guide:

T09MTRAN TRANSID=SRV1,PARM=1344
T09MTRAN TRANSID=SRV2
T09MTRAN TRANSID=SRV3,PARM='1346,IP=138.141.222.17',ID=ID1346
T09MTRAN TRANSID=SRV3,PARM=1347,ID=ID1347

The following start scenarios occur at CPT initialization:

■ Start of transaction SRV1 will start with ‘1344’ passed as character data.

Note: A very common need is to pass the PORT parameter, as shown in this
example of passing the server port number of 1344. For programmers that
prefer to avoid using pointers, this method of passing the port may be easier
than using the EZACONFG layout which requires pointer use.

■ Start of transaction SRV2 where no data is passed to the application

■ Start of transaction SRV3 with a character string of '1346,IP=138.141.222.17'
being passed in the common area

■ Start of transaction SRV3 will start with ‘1347’ passed as character data

EZACONFG Layout:
LSTP DSECT (64 Byte
Length)

The LSTP parameter structure is passed as PARM data whenever any CFG0000
related parameters are specified on the T09MTRAN macro. The transaction can
retrieve the LSTP data by issuing the "EXEC CICS RETRIEVE ..." command.

The CFG0000 parameters that cause a LSTP parmlist to be passed to the
T09MTRAN transaction are listed below.

■ PORT (see note below)

■ BACKLOG

■ ACCTIME

■ REATIME

■ GIVTIME

■ NUMSOCK

■ MINMSGL

■ TRANTRN

■ TRANUSR

■ SECEXIT

■ WLMGN1

■ WLMGN2

■ WLMGN3

Parameter List Passed to T09MTRAN Initiated Transactions

C–4 PL/I Programmers Guide

LSTP DSECT layout is used whenever any of the CFG0000 fields (fields other
than USERID, TERMID, TRANSID and PARMDATA) are configured from the
T09MTRAN macro.

A program can specify the LSTP DSECT by adding the following line to an
Assembler program:
T09DLSTP MF=DSECT

For full details on the LSTP DSECT, the LCA0000, and CFG0000 fields and
layouts please refer to the appendix “Control Block Layouts.”

EZACONFG Layout Usage Example
T09MTRAN TRANSID=SRV4,PORT=4444,BACKLOG=15,WLMGN1=CPTGRP

Any parameter from the list above will create the EZACONFG format of
parameter list.

The transaction SRV4 is started and the LSTP DSECT is passed parameter format.

LCA0000 and CFG0000 Control Block Programming Notes

T09MTRAN Programming Notes C–5

LCA0000 and CFG0000 Control Block Programming Notes
To be runtime compatible with IBM’s CICS sockets, some of the control block
architecture is provided so that program’s written to run in the IBM CICS sockets
environment will execute transparently in a Unicenter SOLVE:CPT environment.

Two control block structures LCA0000 and CFG0000 are created as part of IBM’s
EZACONFG configuration file are also created for Unicenter SOLVE:CPT. See
IBM’s Communications Server IP CICS Sockets Guide for full details on how to use
these features.

Each T09MTRAN entry must be unique by the TRANSID parameter when it
wants to participate in the LCA array field. There is no ID field available inside
the LCA DSECT. There is no way to uniquely identify two or more transactions
using the same transaction ID parameter TRANSID. This is not a severe
limitation within CICS. Multiple transactions can point to the same program. So,
a site needs to uniquely identify each server transaction name in the TRANSID
parameter for each T09MTRAN entry in the T09CONxx configuration file. The ID
field will always be unique among all T09MTRAN entries.

For full details on the LSTP DSECT, the LCA0000, and CFG0000 fields and
layouts please refer to the appendix “Control Block Layouts” in the guide.

The LCA0000 control block can be expanded in an Assembler program by the
following macro expansion:
EZACICA AREA=LCA,TYPE=DSECT

An application can use the EXTRACT EXIT command for program EZACIC01 to
find the global work area pointer:

EXEC CICS EXTRACT EXIT
PROGRAM(EZACIC01)
GASET(ptr)GALEN(len)

At offset zero of the global work area (GWA) will be the literal “ACDC."

At offset x’170 of the GWA will be a pointer to an array of 12 byte LCA entries.
An application can walk through the array until it finds a LCA entry where the
LCATRAN transaction ID matches its own server transaction ID.

The CFG0000 control block can be expanded in an Assembler program by the
following macro expansion:
EZACICA AREA=CONFIG,TYPE=DSECT

A program can specify the LSTP DSECT by adding the following line to an
Assembler program:
T09DLSTP MF=DSECT

Linking EZASOKET, EZACICSO and EZACICAL Applications D–1

Appendix

D
Linking EZASOKET, EZACICSO and
EZACICAL Applications

The IBM CICS Sockets feature of CICS provides an application program
interface (API). The API is supported by all CICS supported languages like
Assembler, COBOL, C, and PL/I. This style of TCP/IP sockets API support is
exemplified by using calls to modules EZASOKET, EZACICSO, or EZACICAL in
your CICS application program. EZASOKET, EZACICSO, or EZACICAL CICS
applications use stub programs to provide TCP/IP sockets API support. These
stubs are part of a CICS TRUE (Task Related User Exit) because they use external
MVS services. Applications must pull in these APIs at the end of the link-edit
step of their compile-and-link JCL to provide support for the API calls. The
mentioned APIs are referred to as the IBM CICS Sockets API.

Do not confuse the EZASOKET, EZACICSO, and EZACICAL socket
applications, or IBM CICS Sockets API applications, with the Unicenter
SOLVE:CPT applications.

Stubs for the applications are as follows:

■ EZASOKET socket applications must link in a stub named EZACICAL,
which has an EZASOKET entry point.

■ EZACICSO socket applications must link in a stub named EZACICSO.

■ EZACICAL socket applications must link in a stub named EZACICAL.

■ Unicenter SOLVE:CPT applications must link in stubs starting with T09F*.

The following topics are discussed in this appendix:

■ Linking EZASOKET Applications

■ Linking EZACICSO Applications

■ Linking EZACICAL Applications

Linking EZASOKET Applications

D–2 PL/I Programmers Guide

Linking EZASOKET Applications
The CICS applications that call EZASOKET must link-edit and include the
EZACICAL module. The EZACICAL module contains an EZASOKET entry
point. Linking enables the API stub for the CICS applications that call the
EZASOKET module.

For an example of the linkage editor control cards needed to pull in the
EZACICAL module, see Example: Linkage Editor Control Cards in this chapter.
You must include EZACICAL from either the IBM Communications Server IP
load library (tcpiphlq.SEZATCP) or the Unicenter SOLVE:CPT 6.1 distribution
library (cpthlq.T09LOAD). EZACICAL has an alias of T09ESOKT in the
cpthlq.T09LOAD library.

Important! You cannot link-edit and include the EZASOKET module directly. It causes
unpredictable results. The real EZASOKET module is a batch only TCP/IP socket
interface (API) that directly calls the EZASMI API. Linking in the EZASOKET module
causes the EZASMI API calls to be made in the CICS region, which exposes the CICS
quasi-reentrant (QR) TCB to many MVS system waits. It can put a CICS region in a
hanging wait state. So linking in EZASOKET module directly to your CICS application
program should be avoided. To avoid the confusion of linking EZASOKET
applications, you can consider using the EZACICSO API calls instead.

Example: Linkage Editor Control Cards

// JOB
....
//LKED EXEC PGM=IEWL....
....
//SYSLIB DD DISP=SHR,DSN=cicsHLQ.SDFHLOAD
//T09LOAD DD DISP=SHR,DSN=CPTHLQ.T09LOAD CA's EZASOKET
//MYOBJLIB DD DISP=SHR,DSN=myobjlib
//SYSLIN DD *
 INCLUDE MYOBJLIB(myprogname)
 INCLUDE T09LOAD(EZACICAL)
 INCLUDE SYSLIB(DFHEAI)
 INCLUDE SYSLIB(DFHEAI0)
 MODE AMODE(31),RMODE(24)
 ENTRY DFHEAI
 ORDER DFHEAI,myprogname
 NAME myprogname(R)

Linking EZASOKET Applications

Linking EZASOKET, EZACICSO and EZACICAL Applications D–3

Example: Link Control Cards for IBM TCP Previously Compiled Programs

Here is an example of how to link your EZASOKET application when using the
IBM CICS Sockets feature.

Note: The only change is for the ddname on the INCLUDE control card that
points to a different load library to pick up another EZACICAL module. You
should not re-link any CICS applications that are currently running over the IBM
CICS Sockets product when they migrate to run over CPT.

// JOB
....
//LKED EXEC PGM=IEWL....
....
//SYSLIB DD DISP=SHR,DSN=cicsHLQ.SDFHLOAD
//IBMEZA DD DISP=SHR,DSN=TCPIP.SEZATCP IBM's EZASOKET
//MYOBJLIB DD DISP=SHR,DSN=myobjlib
//SYSLIN DD *
 INCLUDE MYOBJLIB(myprogname)
 INCLUDE IBMEZA(EZACICAL)
 INCLUDE SYSLIB(DFHEAI)
 INCLUDE SYSLIB(DFHEAI0)
 MODE AMODE(31),RMODE(24)
 ENTRY DFHEAI
 ORDER DFHEAI,myprogname
 NAME myprogname(R)

Linking EZACICSO Applications

D–4 PL/I Programmers Guide

Linking EZACICSO Applications
For the z/OS V1R4 version of Communications Server, IBM provides a
mechanism around some of the confusing points of linking EZASOKET API
CICS applications. The EZACICAL API is not used until z/OS V1R4, yet when
you linked the recommended EZASOKET API, you had to link-edit and include
the non-recommended EZACICAL module. This concept causes more confusion
on the higher level language linkage editor (Binder) steps in JCL.

The solution to this linking problem is provided by the EZACICSO TCP/IP
sockets API. When using the EZACICSO API, you can use the same module
name on the program source code CALL statement as that used in the JCL link-
edit step. Using the EZACICSO API lets you use the Binder's Automatic Library
Call option (AUTOCALL) to build the load modules if you want for the higher
level language.

The EZACICSO API is required when linking CICS applications that use the
EZACICSO API.

You must include EZACICSO from either the IBM Communications Server IP
load library (tcpiphlq.SEZATCP) or the Unicenter SOLVE:CPT 6.1 distribution
library (cpthlq.T09LOAD). EZACICSO has an alias of T09ESOKT in the
cpthlq.T09LOAD library.

Example: EZACICSO Linkage Editor Control Cards

// JOB
....
//LKED EXEC PGM=IEWL....
....
//SYSLIB DD DISP=SHR,DSN=cicsHLQ.SDFHLOAD
//T09LOAD DD DISP=SHR,DSN=CPTHLQ.T09LOAD CA's EZASOKET
//MYOBJLIB DD DISP=SHR,DSN=myobjlib
//SYSLIN DD *
 INCLUDE MYOBJLIB(myprogname)
 INCLUDE T09LOAD(EZACICSO)
 INCLUDE SYSLIB(DFHEAI)
 INCLUDE SYSLIB(DFHEAI0)
 MODE AMODE(31),RMODE(24)
 ENTRY DFHEAI
 ORDER DFHEAI,myprogname
 NAME myprogname(R)

Linking EZACICAL Applications

Linking EZASOKET, EZACICSO and EZACICAL Applications D–5

Linking EZACICAL Applications
The EZACICAL API was delivered with IBM TCP V2.2.1. It was replaced with
the EZASOKET API that was delivered with IBM TCP V3.1.

Important! This API is supported for downward compatibility only. When building
new applications, you should use the EZASOKET or EZACICSO API.

The EZACICAL API is required when linking CICS applications that use the
EZACICAL API.

You must include EZACICAL from either the IBM Communications Server IP
load library (tcpiphlq.SEZATCP) or the Unicenter SOLVE:CPT 6.1 distribution
library (cpthlq.T09LOAD). EZACICAL has an alias of T09ESOKT in the
cpthlq.T09LOAD library.

 Index–1

 Index

A

abortive close example, 3–4

ACL
sample copybook member T09KCACL, B–5

ACL control block
alphabetized cross reference table, B–5
offsets, B–4

ACM
sample copybook member T09KCACM, B–10

ACM control block
alphabetized cross reference table, B–9
offsets, B–7

ADT
control block, B–12

ADT control block
alphabetized cross reference table, B–13
offsets, B–12

ADT control bock
sample copybook member T09KCADT, B–14

AFM control block
alphabetized cross reference table, B–17
sample copybook member T09KCAFM, B–17

AFT
AFTFTPTX, 5–7
AFTRTNTX, 5–7
arguments, B–18

AFT control block
cross reference table, B–19
offsets, B–18
sample copybook member T09KCAFT, B–19

AFTFTPTX of the AFT, 5–7

AFTRTNTX of the AFT, 5–7

API services, 1–2

applications
linking

EZACICAL, D–4, D–5
EZACICSO, D–4
EZASOKET, D–1, D–2

argument for
data transfer, B–12
data translation, B–18, B–22
facility management, B–16

argument for CLose, B–4

argument for connection management, B–7

arguments for
CLOSE (ACL)

service, 2–11
connection management (ACM), 2–5
data transfer (ADT), 2–8
facility management (AFM), 2–14
translation (AXL), 2–12

ASCII data
translating within a user buffer, 2–12

assembler macro T09DRTCD, A–4

automated Unicenter SOLVE:CPT transaction
processing options, 1–3

AXL
argument for data translation, B–22

AXL control block
alphabetized cross-reference table, B–23
offsets, B–22
sample copybook member T09KCAXL, B–24

AXLTOKEN, TRANSLATE service
token, 13–9

AXLVERS version number, TRANSLATE service

Index–2 PL/I Programmers Guide

B

blocking LL RECEIVE, 9–22

blocking RECEIVE loop, 9–28

blocking separator character RECEIVE, 9–24

blocking, RECEIVE service, 9–2

C

CA-InterTest, using with Unicenter SOLVE:CPT
aplications, 2–39

call syntax
FTP Client service, 5–2

CFG0000 control block listing, B–32

CICS
API services, 3–1
Unicenter SOLVE:CPT

code tools, 1–3

client callable service, 1–2

client condensed pseudo code, 2–4

client/data Listener
transaction start, B–26

client/data listener with translation, 7–25

client/server
applications code examples, 2–23
mechanisms for TCP data transfer, 2–7

client-data listener option. See Listener

client-data option data atructure, 7–25

CLOSE service
associated constants from T09KCCON, B–6

CLOSE service
arguments for CLOSE (ACL), 2–11
complete parameter list, 3–10, 3–11
completion of, 2–11
connection and endpoint release, 2–11
defined, 3–1
examples

abortive close, 3–4
graceful close, 3–3

invoking, 3–1
parameter values returned in the ACL, 3–5
PL/1 structures, 3–5
processing control options

ACLABORT, 3–10
ACLORDER, 3–9

recommended ACL parameters, 3–2
sample programs, 3–6
termination, 3–9

abortive, 3–6
graceful, 3–6

token (ACLTOKEN), 3–9
usage, 3–2
usage notes, 3–9
using the ACL, 3–9
version number (ACLVERS), 3–9

COBOL
SOLVE:CPT API

to invoke the Listener with translation from,
7–26

code examples
client/server applications, 2–23
server application, 2–25

multithreaded CICS, 2–27, 2–31
multithreaded data processing, 2–29

compile JCL, D–1

compiling and linking
CPT/API applications. See the "Unicenter
SOLVE:CPT API Services chapter., See the
"Unicenter SOLVE:CPT API Services chapter.
EZACICAL applications, D–4, D–5
EZASOKET applications, D–2
IBM CICS sockets applications, D–1

complete parameter list
CLOSE service, 3–11
CONNECT service, 4–16
FTP Client service, 5–12, 5–18
GIVE service, 6–8, 6–9
LISTEN service, 7–22
RCVFROM service, 8–15
RECEIVE service, 9–43
SELECT service, 10–19
SENDTO service, 11–15
service, 11–12
TAKE service, 12–8
TRANSLATE service, 13–10, 13–11

complete parameter lists
CLOSE service, 3–10
CONNECT service, 4–11
LISTEN service, 7–17
RCVFROM service, 8–10
RECEIVE service, 9–37
SEND service:, 10–15
SENDTO service, 11–10

 Index–3

TAKE service, 12–8

completion information
CLOSE service, 3–6
CONNECT service, 4–6
FTP Client service, 5–6
GIVE service, 6–5
LISTEN service, 7–10
RECEIVE service, 9–32
SEND service, 10–10
TAKE service, 12–5
TRANSLATE service, 13–7
when the ACMTRNID field is not specified in the
CPT-ACM, 7–11

CONNECT service, 2–6
complete parameter list, 4–11, 4–16
completion information, 4–6
creating connections, 2–13
data transfer buffering, 4–10
defined, 4–1
established connection information, 4–9
example, 4–3
implementing TCP/IPfacilities, 4–9
invoking, 4–1
parameter values returned in the ACM, 4–4
PL/I structures, 4–5
recommended ACM parameters, 4–2
remote

host name (ACMRNAME), 4–9
IP address (ACMRADDR), 4–9

required and optional fields, 4–9
return codes, 3–7, 4–7
sample programs, 4–6
service name (ACMSRVCE), 4–10
transport provider port number (ACMPORT), 4–
10
updating the ACM, 4–6
usage notes, 4–9
version number (ACMVERS), 4–9

Connect/Listen associated constants from
T09KCCON, B–11

connection management
establishing connections, 2–5

connection release, 2–13
CLOSE service, 2–11
TRUE management routines, 2–11

connection time security program
offsets, B–27

connections, creating
CONNECT service, 2–13

LISTEN service, 2–13

control block layouts, B–1

control blocks
sample copybook member T09KCSEC, B–28
sample copybook member T09KCSKL, B–26

control blocks
ACL, B–4

cross reference, B–5
offsets, B–4

ACM
alphabetized cross reference, B–9
offsets, B–7

ADT
alphabetized cross reference, B–13
offsets, B–12

AFM, B–16
alphabetized cross reference, B–17

AFT, B–18
cross reference, B–19
offsets, B–18

argument for ACM, B–7
argument for ADT, B–12
AXL, B–22

cross-reference, B–23
offsets, B–22

control blocks, LCA0000 and CFG0000 programming
notes, B–31, C–5

CPT API
CICS installation program sample, 2–36
external subroutine calls, 2–2
installation program sample, 2–35
internal subroutine calls, 2–2
task-related user exit (TRUE) interface, 2–3

custom translation table
method 1, 13–5
method 2, 13–5

customizing
RECEIVE tool, 1–6
SEND tool, 1–8
Unicenter SOLVE:CPT tools, overview, 1–3

D

data processing errors
RECEIVE tool, 1–7
SEND tool, 1–10

data SEND example, 10–5

Index–4 PL/I Programmers Guide

data transfer
associated constants from T09KCCON, B–15
TCP, 2–7

data transfer, TCP programming options, 2–7

data translation
TRANSLATE service, 2–12
translating ASCII data, 2–12
translating EBCDIC data, 2–12

daughter task taking ownership of a session, 7–7

destination control table (DCT), 1–5

diagnostic code field, A–4

diagnostics
LISTEN tool, 1–5
RECEIVE tool, 1–7
SEND tool, 1–10

DSECTS
T09DLSTP, B–29

E

EBCDIC data
translating within a user buffer, 2–12

endpoint release, using
CLOSE service, 2–11
TRUE management routines, 2–11

examples
CLOSE service

abortive close, 3–4
graceful close, 3–3
overview, 3–2

CONNECT service, 4–3
FTP client service, 5–3
GIVE service, 6–2
LISTEN service call, 7–3
LL SEND, 10–6
RCVFROM service, 8–4
RECEIVE service

double separator character example, 9–4
LL RECEIVE example, 9–3

sample daughter task taking ownership of a
session, 7–7
SEND service

separator character, 10–7
SENDTO service, 11–4
TAKE service, 12–2
TRANSLATE service, 13–2, 13–4

inbound translation, 13–3

outbound translation, 13–4

exits
Unicenter SOLVE:CPT

TRUE, 5–11

EZACICAL applications, linking, D–4, D–5

EZACONFG layout, LSTP DSECT, C–3

EZASOKET applications, linking, D–2

F

facility management
GIVE service, 2–13, 2–14
multi-tasked applications, 2–13
TAKE service, 2–13, 2–15

file boundaries in TCP data transfer, 2–7

FTP Client service
complete parameter list, 5–12, 5–18
completion information, 5–6
parameter values returned in the AFT, 5–5
PL/I structures, 5–5
recommended AFT parameters, 5–2
return codes, 5–7
sample programs, 5–6
syntax, 5–2
usage example, 5–3
usage notes, 5–11

G

GIVE service
arguments for facility management (AFM), 2–14
complete parameter list, 6–8, 6–9
completion information, 6–5
completion of, 2–14
connection ownership, 6–7
defined, 6–1
example, 6–2
facility management, 2–14
invoking, 6–1
parameter values returned in the AFM, 6–4
PL/I structures, 6–4
recommended AFM parameters, 6–2
return codes, 6–6
sample programs, 6–5
token (AFMTOKEN), 6–7
usage, 6–7
version number (AFMVERS), 6–7

 Index–5

GIVE/TAKE associated constants from T09KCCON,
B–18

graceful close, 3–3

I

inbound translation example, 13–3

initialization
SEND tool transaction and data transfer, 1–8

J

JCL, D–1, D–4

L

LCA0000 and CFG0000 control blocks, programming
notes, B–31, C–5

LCA0000 control block listing, B–31

linking
CPT/API application. See the "Unicenter
SOLVE:CPT API Services chapter.
EZACICAL applications, D–4, D–5
EZACICSO applications, D–4
EZASOKET applications, D–2
IBM CICS Sockets(EZASOKET) applications, D–3
JCL, D–1

LISTEN service, 2–6
call

tokens, 7–11
complete parameter list, 7–17, 7–22
completion information, 7–10
completion of, 2–6
creating connections, 2–13
data transfer buffering, 7–15
establishing listening and client connections, 7–11
implementing TCP/IP server facilities, 7–14
initiation

with a transaction ID, 7–11
invoking, 7–1
multithreaded server

special start transaction needs, 7–5
standard, 7–4

network considerations, 7–16
parameter values returned in the ACM, 7–8

PL/I structures, 7–8
recommended ACM parameters, 7–2
recommended server, 7–3
required and optional fields, 7–14
return codes, 7–12
sample daughter task taking ownership of a
session, 7–7
sample programs, 7–9
single-threaded server, 7–6
token information, 7–14
transaction ID field (ACMTRNID), 7–14
usage notes, 7–14
version number (ACMVERS), 7–14

LISTEN service call
examples, 7–3

LISTEN tool
defining, 1–4
diagnostics, 1–5
initiating, 1–4

listen tool, invoking, 7–25

listener
invoking, 7–25

Listener
to invoke with translation from

COBOL SOLVE:CPT API, 7–26

LL RECEIVE example, 9–3

LL RECEIVE option, 9–3

LL SEND
example, 10–6
option, 10–3

LSTP DSECT, EZACONFG layout, C–3

M

macros
defining T09MSEND for customizing SEND tool,
1–8
T09MLSTN instructions, 1–6
T09MRECV instructions, 1–6
T09MTRAN, C–1

managing connections
TRUE management routines, 2–13

multi-tasked applications
facility management, 2–13

multithreaded server

Index–6 PL/I Programmers Guide

special start transaction needs, 7–5
standard, 7–4

N

network considerations
LISTEN service, 7–16
RCVFROM service, 8–7
SENDTO service, 11–7

non-blocking, 9–2

non-blocking fixed length RECEIVE, 9–7

non-blocking LL RECEIVE, 9–13

non-blocking RECEIVE loop, 9–26

non-blocking separator character RECEIVE, 9–16

O

offsets
ACL, B–4
ACM, B–7
ADT, B–12
AFM, B–16
AFT, B–18
AXL, B–22
security program control block, B–27

outbound translation example, 13–4

overriding the default translation table
custom, 13–5

P

parameter list passed to initiated transactions, C–2

parameter values returned in the ACL
CLOSE service:, 3–5

parameter values returned in the ACM
CONNECT service, 4–4
LISTEN service, 7–8

parameter values returned in the ADT
RCVFROM service, 8–5
RECEIVE service, 9–31
SEND service, 10–9
SENDTO service, 11–5

parameter values returned in the AFM
GIVE service, 6–4
TAKE service, 12–3

parameter values returned in the AFT
FTP lient service, 5–5

parameter values returned in the AXL
TRANSLATE service, 13–6

parsing requirements
RECEIVE tool, 1–6
writing data to the transient data queue, 1–6

PL/1 structures
CLOSE service, 3–5

PL/I structures
FTP Client Services, 5–5

PL/I structures
CONNECT service, 4–5

PL/I structures
GIVE service, 6–4

PL/I structures
LISTEN service, 7–8

PL/I structures
RECVFROM service, 8–6

PL/I structures
RECEIVE service, 9–31

PL/I structures
SEND service, 10–9

PL/I structures
SENDTO service, 11–6

PL/I structures
TAKE service, 12–4

PL/I structures
TRANSLATE service, 13–6

processing errors
RECEIVE tool, 1–7
SEND tool, 1–9
SEND tool transport provider, 1–10

program samples
API UDP client, 2–38
API UDP server, 2–38
CICS installation, 2–35
CPT API installation, 2–32
CPT API server, 2–36, 2–37
Unicenter SOLVE

CPT API server, 2–37
Unicenter SOLVE:CPT

 Index–7

API CICS installation, 2–36
Unicenter SOLVE:CPT API server, 2–36

pseudo code
client condensed, 2–4
server condensed, 2–4

R

RCVFROM service
arguments, 8–1
complete parameter list, 8–10, 8–15
creating UDP data transfer and endpoints, 2–10
defined, 8–1
network considerations, 8–7
parameter values returned in the ADT, 8–5
recommended ADT parameters, 8–3
return codes, 8–8
sample programs, 8–6

RECEIVE, 9–31

RECEIVE service
return codes, 9–33

RECEIVE methodology options
introduction, 9–5

RECEIVE service
complete parameter list, 9–37, 9–43
completion information, 9–32
data

buffer length, 9–36
transfer buffering, 9–32

double separator character example, 9–4
invoking, 9–1
LL RECEIVE example, 9–3
methodology options, 9–2
non-blocking fixed length RECEIVE, 9–7
PL/I structures, 9–31
recommended ACM parameters

blocking fixed length RECEIVE, 9–20
recommended ADT parameters, 9–7

blocking LL RECEIVE, 9–22
blocking RECEIVE loop, 9–28
blocking separator character RECEIVE, 9–24
non-blocking RECEIVE loop, 9–26
non-blocking variable length RECEIVE, 9–10

recommended ADT parameters:, 9–13
recommended ADTparameters

non-blocking separator character RECEIVE,
9–16

sample program usage
blocking fixed length RECEIVE, 9–20

blocking LL RECEIVE, 9–22
blocking RECEIVE loop, 9–29
blocking separator character RECEIVE, 9–25
non-blocking fixed length RECEIVE, 9–8
non-blocking LL RECEIVE, 9–14
non-blocking RECEIVE loop, 9–27
non-blocking separator character RECEIVE,
9–17
non-blocking variable length RECEIVE, 9–11

sample programs, 9–32
terminology and RECEIVE concepts

blocking, 9–2
token (ADTTOKEN), 9–36
usage notes, 9–35
version number (ADTVERS), 9–35

RECEIVE tool
customizing, 1–6
data processing errors, 1–7
diagnostics, 1–7
overview, 1–5
parsing requirements, 1–6
processing errors, 1–7
reliability factors, 1–6
transport provider processing errors, 1–7

recommended ACL parameters
CLOSE service, 3–2

recommended ACM parameters
CONNECT service, 4–2
LISTEN service, 7–2
TAKE service, 12–2

recommended ADT parameters
RCVFROM service, 8–3
RECEIVE service, 9–7

blocking fixed length RECEIVE, 9–20
blocking LL RECEIVE, 9–22
blocking RECEIVE loop, 9–28
blocking separator character RECEIVE, 9–24
non-blocking LL RECEIVE, 9–13
non-blocking RECEIVE loop, 9–26
non-blocking separator character RECEIVE,
9–16
non-blocking variable length RECEIVE, 9–10

SEND service, 10–2
optional parameters, 10–2

SENDTO service, 11–3

recommended AFM parameters
GIVE service, 6–2

recommended AFT parameters
FTP Client service, 5–2

Index–8 PL/I Programmers Guide

recommended AXL parameters
TRANSLATE service, 13–2

recommended server, LISTEN service, 7–3

RECVFROM service
PL/I structures, 8–6
sample usage, 8–4

releasing connections, 2–13

reliability factors
RECEIVE tool, 1–6
SEND tool, 1–9

return codes, A–1
CONNECT service, 3–7, 4–7
diagnostic code field, A–4
FTP Client service, 5–7
GIVE service, 6–6
LISTEN service, 7–12
RCVFROM service, 8–8
RECEIVE service, 9–33
SEND service, 10–12
SENDTO service, 11–8
TAKE service, 12–5
TRANSLATE service, 13–8

S

sample copybook member
T09KCACL, B–5
T09KCACM, B–10
T09KCADT, B–14
T09KCAFM, B–17
T09KCAFT, B–19
T09KCAXL, B–24
T09KCSEC, B–28
T09KCSKL, B–26

sample PL/I call constants copybook
T09KCCON, B–1

sample program usage
RECEIVE service

blocking fixed length RECEIVE, 9–20
blocking LL RECEIVE, 9–22
blocking RECEIVE loop, 9–29
blocking separator character RECEIVE, 9–25
non-blocking fixed length RECEIVE, 9–8
non-blocking LL RECEIVE, 9–14
non-blocking RECEIVE loop, 9–27
non-blocking separator character RECEIVE,
9–17
non-blocking variable length RECEIVE, 9–11

sample programs
API UDP server, 2–38
CLOSE service, 3–6
CONNECT service, 4–6
FTP Client service, 5–6
GIVE service, 6–5
LISTEN service, 7–9
RCVFROM service, 8–6
RECEIVE service, 9–32
SEND service, 10–10
SENDTO service, 11–6
TAKE service, 12–4
TRANSLATE service, 13–7

sample usage
RECVFROM service, 8–4

samples
T09PCFTP, 5–3

security communications block, 2–21, 2–22

security program, 2–20

security program control block, B–27

SELECT service
complete parameter list, 10–19

SELECT tool
overview, 1–11

SELECT tool, RECEIVE service, 9–3

SEND service
arguments for ADT, 2–8
complete parameter list, 10–15
completion information, 10–10
completion of, 2–8
data

buffer length, 10–11, 10–14
SEND example, 10–5
storage, 10–10, 10–13

defined, 10–1
invoking, 10–1
LL SEND

example, 10–6
option, 10–3

optional ADT parameters, 10–2
parameter values returned in the ADT, 10–9
PL/I structures, 10–9
queue and buffer sizes, 10–11, 10–14
recommended ADT parameters, 10–2
return codes, 10–12
sample programs, 10–10
separator character example, 10–7
separator character option, 10–3

 Index–9

TCP data transfer, 2–8
token (ADTTOKEN), 10–11, 10–14
usage notes, 10–13
version number (ADTVERS), 10–11, 10–14

SEND tool, 1–8
control information, 1–9
customizing, 1–8
data processing error, 1–10
diagnostics, 1–10
initialization

automated transaction and transfer data, 1–8
processing errors, 1–9
reliability factors, 1–9
transport provider processing error, 1–9

SENDTO service
complete parameter list, 11–10, 11–15
creating UDP data transfer and endpoints, 2–10
defined, 11–1
examples, 11–4
network considerations, 11–7
parameter values returned in the ADT, 11–5
PL/I structures, 11–6
recommended ADT parameters, 11–3
return codes, 11–8
sample programs, 11–6

separator character RECEIVE option, 9–4

separator characters
SEND example, 10–7
SEND service, 10–3

server application code examples, 2–25
multithreaded CICS, 2–27, 2–31
multithreaded data processing, 2–29

server condensed pseudo code, 2–4

service
complete parameter list, 11–12

setting the default translation table, 13–5

single-threaded server, 7–6

SOLVE:CPT API
to invoke the Listener

with translation from
COBOL, 7–26

SOLVE:CPT FTP Client Service
module descriptions, 5–9

SOLVE:CPT FTP Client service modules
T09TCFCM, 5–9

SOLVE:CPT FTP Client Service modules

T09TCFDM, 5–10
T09TCFRM, 5–10

standard multithreaded server, 7–4, 7–5

subroutine calls
CPT external, 2–2
CPT internal, 2–2

T

T09DLSTP DSECT sample, B–29

T09DRTCD macro, A–4

T09DRTCD.assembler DSECT sample member, A–4

T09KCACL sample copybook member, B–5

T09KCACM
sample copybook member, B–10

T09KCADT, sample copybook member, B–14

T09KCAFM sample copybook member, B–17

T09KCAFT sample copybook member, B–19

T09KCAXL, sample copybook member, B–24

T09KCCON
translate associated constants, B–25

T09KCCON
COBOL call constants copybook, B–1
data transfer associated constants, B–15
GIVE/TAKE associated constants, B–18

T09KCSEC, sample copybook member, B–28

T09KCSKL sample copybook member, B–26

T09MLSTN
macro, C–1

T09MLSTN macro
instructions, 1–6

T09MRECV macro
instructions, 1–6

T09MSEND macro
defining for customizing SEND tool, 1–8

T09MTRAN
programming notes, C–1

T09MTRAN initiated transactions
parameter list passed, C–2

T09MTRAN macro, B–29

Index–10 PL/I Programmers Guide

T09MTRAN statement
basic, recommended layout for data passed from
PARM field, C–2
EZACONFG layout, C–3

T09PCFTP
sample program, 5–3

T09TCFCM
SOLVE:CPT FTP Client service module, 5–9

T09TCFDM
SOLVE:CPT FTP Client Service module, 5–10

T09TCFRM
SOLVE:CPT FTP Client Service module, 5–10

TAKE service
complete parameter list, 12–8
completion information, 12–5
completion of, 2–15
data transfer, 12–7
defined, 12–1
examples, 12–2
facility management, 2–15
implementing, 2–15
overview, 12–1
parameter values returned in the AFM, 12–3
PL/I structures, 12–4
recommended ACM parameters, 12–2
return codes, 12–5
sample programs, 12–4
token (AFMTOKEN), 12–7
usage notes, 12–6
version number (AFMVERS), 12–7

task-related user exit (TRUE) interface, 2–3

TCP
connection management, 2–5

argument for connection management, 2–5
token connection, 2–5

data transfer, 2–7
client/server mechanisms, 2–7
file boundaries, 2–7
programming options, 2–7
RECEIVE service, 2–8
SEND service, 2–8

terminology and RECEIVE concepts
blocking, 9–2
LL RECEIVE option, 9–3
non-blocking, 9–2
SELECT tool, 9–3
separator

RECEIVE option, 9–4

token connection, 2–5
CONNECT service, 2–6
LISTEN service, 2–6

token UDP endpoints, 2–9

translate associated constants from T09KCCON, B–25

TRANSLATE service
arguments for translation (AXL), 2–12
complete parameter list, 13–10, 13–11
completion information, 13–7
completion of, 2–12
defined, 13–1
inbound translation example, 13–3
invoking, 13–1
outbound translation example, 13–4
overriding the default translation table

custom, 13–5
parameter values returned in the AXL, 13–6
PL/I structures, 13–6
recommended AXL parameters, 13–2
return codes, 13–8
sample programs, 13–7
setting the default translation table, 13–5
token (AXLTOKEN), 13–9
usage notes, 13–9
version number (AXLVERS), 13–9

translation table
custom

method 2, 13–5

transport provider errors
RECEIVE tool, 1–7
SEND tool, 1–9

TRUE interface, 2–3

TRUE management routines
connection and endpoint release, 2–11
managing connections, 2–13

U

UDP data transfer and endpoints
creating

RCVFROM service, 2–9
SENDTO service, 2–9

Unicenter SOLVE:CPT
Administrative Interface

overview, 1–2
API

application programming concepts, 2–3

 Index–11

CICS installation program sample, 2–32
invoking listener tool, 7–25
server program samples, 2–37
services, 1–2
UDP client programs sample, 2–38
UDP server programs sample, 2–38
well-known transport provider port, 2–3

FTP Client service
callable service, 1–2
diagram, 2–18
introduction, 2–16
overview, 2–17

interface, 2–2
tools

CICS code, 1–3
customizing, 1–3
LISTEN, 1–4
RECEIVE, 1–5, 1–6
SEND, 1–8

TRUE exits, 5–11

Unicenter SOLVE:CPT TRUE exits, 5–11

Unicenter TCPaccess
connection management

CONNECT service, 2–6
LISTEN service, 2–6

usage examples
FTP client service, 5–3

usage notes
CLOSE service, 3–9
CONNECT service, 4–9
FTP Client service, 5–11
GIVE service, 6–7
LISTEN service, 7–14
RECEIVE service, 9–35
SEND service, 10–13
TAKE service, 12–6
TRANSLATE service, 13–9

W

well-known port, 2–3

X

xTRANSLATE service:, 13–2

	Unicenter SOLVE:CPT PL/I Programmers Guide
	Contents
	1: Unicenter SOLVE:CPT Tools
	The Unicenter SOLVE:CPT Administrative Interface
	Unicenter SOLVE:CPT API Services
	The Unicenter SOLVE:CPT FTP Client Callable Service

	Automated Transactions
	Tools Customization

	The LISTEN Tool
	Diagnostics
	MRO Feature

	The RECEIVE Tool
	Customization
	Reliability Factors
	Data Processing Errors
	Diagnostics

	The SEND Tool
	Customization
	Reliability Factors
	Data Processing Error
	Diagnostics

	The SELECT Tool

	2: Unicenter SOLVE:CPT API Services
	The Unicenter SOLVE:CPT Interface
	Unicenter SOLVE:CPT Task-Related User Exit Interface (TRUE)
	Application Programming Concepts
	Client Condensed Pseudo Code
	Server Condensed PseudoCode

	TCP Connection Management
	LISTEN
	CONNECT

	TCP Data Transfer
	SEND
	RECEIVE

	UDP Data Transfer and Endpoint Creation
	SENDTO
	RCVFROM

	Connection and Endpoint Release
	CLOSE

	Data Translation
	TRANSLATE

	Facility Management
	GIVE
	TAKE

	Unicenter SOLVE:CPT FTP Client Service
	Unicenter SOLVE:CPT FTP Client Service Overview

	Security Program
	Security Program
	The Security Communications Block
	Security Communications Block

	Sample Unicenter SOLVE:CPT API Pseudo Code
	Client Application Example
	Server Application Example 1
	Server Application Example 2
	Server Application Example 3
	Server Application Example 4

	Unicenter SOLVE:CPT API Sample Programs
	Client 1 Sample Program
	TCP Client 2 Sample Program
	TCP Server 1 Sample Program
	TCP Server 2 Sample Program
	Server 3 Sample Program
	Server 4 Sample Program
	Server 5 Sample Program
	UDP Client Sample Program
	UDP Server Sample Program

	Using CA-InterTest with Unicenter SOLVE:CPT Applications
	Compiling and Linking a CPT API Application

	3: CLOSE Service
	Call Syntax
	Recommended ACL Parameters
	Usage Examples
	Graceful Close
	Abortive Close

	Parameter Values Returned in the ACL
	PL/I Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	4: CONNECT Service
	Call Syntax
	Recommended ACM Parameters
	Usage Example
	Parameter Values Returned in the ACM
	PL/I Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	5: FTP Client Service
	Call Syntax
	Recommended AFT Parameters
	Usage Example
	Parameter Values Returned in the AFT

	PL/I Structures
	Sample Programs
	Completion Information
	Return Codes
	Module Descriptions
	T09TCFCM
	T09TCFDM
	T09TCFRM

	Usage Notes
	Complete Parameter List

	6: GIVE Service
	Call Syntax
	Recommended AFM Parameters
	Usage Example
	Parameter Values Returned in the AFM
	PL/I Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	7: LISTEN Service
	Call Syntax
	Recommended ACM Parameters
	Usage Examples
	Recommended Server
	Standard Multithreaded Server
	Multithreaded Server--Special Start Transaction Needs
	Single-Threaded Server
	Sample Daughter Task Taking Ownership of a Session

	Parameter Values Returned in the ACM
	PL/I Structures
	Sample Programs
	Completion Information
	Completion Information When the ACMTRNID Field Is Set in the CPT-ACM
	Completion Information When the ACMTRNID Field Is Unspecified in the CPT ACM

	Return Codes
	Usage Notes
	Network Considerations
	Complete Parameter List
	Client-Data Listener Option
	Client-Data Option Data Structure
	Examples
	Invoking the Listener with Translation from an PL/I CPT
	Example of a PL/I Program, Client-Data Listener

	8: RCVFROM Service
	Call Syntax
	Recommended ADT Parameters
	Usage Example
	Parameter Values Returned in the ADT
	PL/I Structures
	Sample Programs
	Network Considerations
	Return Codes
	Complete Parameter List

	9: RECEIVE Service
	Call Syntax
	Receive Methodology Options
	Terminology and Receive Concepts Used in the Definitions
	BLOCKING
	NON-BLOCKING
	SELECT Tool
	LL RECEIVE Option
	Separator Character RECEIVE Option
	Timed RECEIVE

	Introduction to Receive Methodology Options
	Non-Blocking Fixed Length RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Non-Blocking Variable Length RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Non-Blocking LL RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Non-Blocking Separator Character RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Blocking Fixed Length RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Blocking LL RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Blocking Separator Character RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Non-Blocking RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Blocking RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Parameter Values Returned in the ADT
	PL/I Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	10: SEND Service
	Call Syntax
	Recommended ADT Parameters
	LL SEND
	Separator Character SEND

	Usage Examples
	Data SEND Example
	LL SEND Example
	Separator Character SEND Example

	Parameter Values Returned in the ADT
	PL/I Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	11: SENDTO Service
	Call Syntax
	Recommended ADT Parameters
	Usage Example
	Parameter Values Returned in the ADT
	PL/I Structures
	Sample Programs
	Network Considerations
	Return Codes
	Complete Parameter List

	12: TAKE Service
	Call Syntax
	Recommended AFM Parameters
	Usage Example
	Parameter Values Returned in the AFM
	PL/I Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	13: TRANSLATE Service
	Call Syntax
	Recommended AXL Parameters
	Usage Example
	Inbound Translation Example
	Outbound Translation Example

	Custom Translation Table Usage Notes
	Parameter Values Returned in the AXL
	PL/I Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	A: Return Codes
	Return Codes
	Diagnostic Code Field

	PL/I Structure T09KPRCS

	B: Control Block Layouts
	T09KPCON: PL/I Call Constants Structure
	ACL: Argument for CLose Used by the CLOSE API Service
	Offset Table
	Alphabetized Field Name Cross-Reference Table
	Sample Structure Member T09KPACL
	CLOSE Associated Constants from Structure Sample Member T09KPCON

	ACM: Argument for Connection Management Used by the CONNECT and LISTEN API Services
	Offsets
	Alphabetized Field Name Cross-Reference Table
	Sample Structure Member T09KPACM
	Connect/Listen Associated Constants from Structure Sample Member T09KPCON

	ADT: Argument for Data Transfer Used by RECIEVE, SEND, RECVFROM, and SENDTO€Services
	Offsets
	Alphabetized Cross-Reference Table
	Sample Structure Member T09KPADT
	Data Transfer Associated Constants from Structure Sample Member T09KPCON

	AFM: Argument for Facility Management Used by the€GIVE and TAKE Services
	Offsets
	Alphabetized Cross-Reference Table
	Sample Structure Member T09KPAFM
	GIVE/TAKE Associated Constants from Structure Sample Member T09KPCON

	AFT: Argument for File Transfer Used by the FTP Client Service Call
	Offsets
	Alphabetized Cross-Reference Table
	Sample Structure Member T09KPAFT
	File Transfer Associated Constants from Structure Sample Member T09KPCON

	AXL: Argument for Data Translation Used by the Translate API Service
	Offsets
	Alphabetized Cross-Reference Table
	Sample Structure Member T09KPAXL
	Translate Associated Constants from Structure Sample Member T09KPCON

	Client Data Listener Transaction Start
	Sample Structure Member T09KPCSK

	Connection Time Security Program Control Block
	Offsets
	Sample Structure Member T09KPSEC

	Parameter List Passed to T09MTRAN Initiated Transactions
	T09DLSTP DSECT Sample
	Field Descriptions

	LCA0000 and CFG0000 Control Blocks
	LCA0000 Control Block Listing
	CFG0000 Control Block Listing

	C: T09MTRAN Programming Notes
	Parameter List Passed to T09MTRAN Initiated Transactions
	Basic Layout Usage Examples
	EZACONFG Layout Usage Example

	LCA0000 and CFG0000 Control Block Programming Notes

	D: Linking EZASOKET, EZACICSO and EZACICAL Applications
	Linking EZASOKET Applications
	Example: Linkage Editor Control Cards
	Example: Link Control Cards for IBM TCP Previously Compiled Programs

	Linking EZACICSO Applications
	Example: EZACICSO Linkage Editor Control Cards

	Linking EZACICAL Applications

	Index
	

